Key | Value |
---|---|
FileSize | 1500908 |
MD5 | 99ABDC424B667D20F9C497BF1C647F9B |
PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-cvxopt |
PackageSection | python |
PackageVersion | 1.1.3-2fakesync1 |
SHA-1 | 8AD25406D96BD52AB125DE208D8521F57C0F9834 |
SHA-256 | 0E09BC10C247E7A75F309F95AA89E3E5D37005A72C3B09D2C526BAACEC7C35F4 |
hashlookup:children-total | 88 |
hashlookup:trust | 50 |
The searched file hash includes 88 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
FileSize | 445 |
MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
Key | Value |
---|---|
FileName | ./usr/share/pyshared/cvxopt/msk.py |
FileSize | 30303 |
MD5 | BE75B79CF584BCE72E192EBA9F18795C |
SHA-1 | 0973A4BF52618DFC6A43690840B0A405B77DFE6A |
SHA-256 | A79578F461864CEDF023EEB5E62E086A6FF384DBC9F33772396BEC757B9A5A95 |
SSDEEP | 384:K7R5stI/7kyl/sdF48C/eQsweUAq/MlXiI/l0kwCkHI/yr:Uvstkgyl/sdF48ODsweiaXik6kXkHkW |
TLSH | T11CD2830558400D3AA2A3817D8CD7CC097F6195633D8B2D7A386C91B86F1B737D7B87AA |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/regsel.py |
FileSize | 3149 |
MD5 | 437919296D51AC8F69D12500C0807F42 |
SHA-1 | 097BB7690701B72F1ABB505DCC1016A792BE9EC9 |
SHA-256 | 24429B539050989ACBB789680C3E5E10574C938435FDFAB373A23F7C0BA58B01 |
SSDEEP | 96:S3HRpoF7BL4lCI1wz9WAdB+73DXLv18byir:G7lCvRK3Db98bye |
TLSH | T142516544F4423C76865BD1A9E4D134204F2AD4272D1F289AFFAE3E888F478F54674389 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/consumerpref.py |
FileSize | 3991 |
MD5 | 5CCD74DD7D1E5423D4C8C18F3FEFCC2F |
SHA-1 | 0FB481D08091F23B0622C13CC9F8ABFB75FF9BC3 |
SHA-256 | 806DD9B8F6944C06A04A87D8FB2F986747E900D0136FFCFB5F40CA007D98891B |
SSDEEP | 96:AJOmZEEFIXIZJj0SRQwC5Aw212g0SRojzhze:AImWCIXIZJj0S+wCCXgg0SiVe |
TLSH | T15D81EC03127AE9344A07D7FEE5913310A92DD8EB6D1A3886306E0E875F175ED6232D5F |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap9/floorplan.py.gz |
FileSize | 1507 |
MD5 | 3D46A3E0091B6C5456B860784E4ED58B |
SHA-1 | 10B5C849601281E41F0E47BEA7D21D09AAE4391A |
SHA-256 | B3D430325563926C6520EFC4BB2EF20814B6811390A6A6D86832690D27874061 |
SSDEEP | 24:Xby2zMH0eOxdTGRnLyIkbUNICSbQ8bd9iwZgbd0a5YmStsd/8y7BPL7wvBT7:XbrwitG1vNuQ0iw0+a5HSQ/z7Za7 |
TLSH | T1FC310A927C3839084128FE4A0E861EEF602EC01F68A120A1347E301B9F096C780E53E9 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/cvxopt/lapack.so |
FileSize | 237600 |
MD5 | B837C56CF50D9DA3633397412496AF68 |
SHA-1 | 111EAE6C213927ADF7A3760C53A276A6FD9013A1 |
SHA-256 | C174160C6A8AD0C22F993CE360D448595C4A9A42AA7744C9B89E7C065E178DE1 |
SSDEEP | 3072:0KTVZqicUcTUkO0knmnYhPz/v4e5uu9eYFDiNp:3Z2UkO0k2YNz/AK |
TLSH | T10D34C631FB6311F8C515C8B44A6784E36AB0790D82357A757A8C9B753FA2F20A32F764 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/cvxopt/base.so |
FileSize | 181216 |
MD5 | 359BD2D98A8A9D8F02A07DF7B6D9BB3D |
SHA-1 | 1191F8F6C53AA6C47A519399F7CE11B6FC3E3D97 |
SHA-256 | 3B094E73FF9406CDD11A015CDD19423ABCDF948F066ECAEDEB9B550C73BF359D |
SSDEEP | 3072:AqSEje42i9zQ5qdVt/kkUFuCaO4Q8nG7NtaECmOonol:6EKVi5mKWLNt3CmOo |
TLSH | T11F043B97E0A214BCC1A6D4314B97E1737AF1F82943252B7A3688DA302F67F205B6F754 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/cvxopt/cholmod.so |
FileSize | 289504 |
MD5 | 68CF605FB6AF608BF4F5D1D3B2A78A4C |
SHA-1 | 11E8A3095A17B083205DA77A966128A823A42E09 |
SHA-256 | E3E4C981062D6D8F3D58E02E887DE0BCE9738359CB379B229D5C9BF65F622E20 |
SSDEEP | 6144:zdFWmSQ5ArBHkvEXXARtgJHxyKHRPJqDCu44kWdR:zdAuCrK8HlRinc |
TLSH | T1B9541A07F0A200ACC19BC875C7B679736A31785C81253B767699E9382FB9F209F1B716 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/CVXOPT.pdf |
FileSize | 889714 |
MD5 | 6264A3CDFEE65A9692E7B28B8BED4CDC |
SHA-1 | 13EF4E32FBB93B96AD9458BB37502E95A847C94C |
SHA-256 | BC6495CB61801AB5481503A8C182A93FDB556F70B8500E459E5A1B1F0A3F1267 |
SSDEEP | 24576:lWwsUmqb7D/0hqQB9mtxhEYj3XhAP8CLq1:wwBLbAIxSYjn2P8Qi |
TLSH | T199157B78E6C85CCDF0C2CF76943BB16C567F72639EE8784164784904D49A48AABC3AC7 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap8/conelp.py |
FileSize | 815 |
MD5 | EA54E397E3093B100C5BBF14C3A4E06D |
SHA-1 | 14BC88EA42FD67A8DCA767FADCAAC178D8332816 |
SHA-256 | 949E33AE7959C59A90D10159DA32363FDD36BB226DE58E1F3A4569FB46433DA2 |
SSDEEP | 12:UIFEa7NQBQMLt1YcTYeul+RHbq4Gn+1G2rAoDo29gzKaneSnYtfszECro:UI57NEnZful+xua/A8mKank2vc |
TLSH | T1AC01D49F91873CF4432E8B74A0471D1467B6C83979D73188387E8E2DAB3DB8496ACE54 |