Result for 8AA81F9C3477DBFB0D854D3A636E5C971D04A4E2

Query result

Key Value
FileName./usr/share/doc-base/libint-dev
FileSize331
MD50F28E204A775B979965DDF67EDF729C1
SHA-18AA81F9C3477DBFB0D854D3A636E5C971D04A4E2
SHA-2561F0BF88010D1E26C9A6918FCA6F2E1609247413536592BA9F316BBF602BC6154
SSDEEP6:L+LbRrJEXPmRTHDyDiTc+tpUYiQ/BBWbfTROY4HSJU4zoLEDA:+drMsTH+eTce2YzTuUYSooLEDA
TLSHT17CE0289131355370D48304A143CFFC8D0B34F460B47D52001C39033DC857594403F54D
hashlookup:parent-total41
hashlookup:trust100

Network graph view

Parents (Total: 41)

The searched file hash is included in 41 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize2862972
MD574568A7D47E741D78A44917328D332A3
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-1077C8696D815AA2A1B08F4433F2548B9E1542FB2
SHA-2563F89680F614517F1483CEF0B3B1B704B22785B78B9386F836ED540F3C38AC742
Key Value
FileSize3056808
MD5EEAED079EBB089CA83642B42A2CDAD55
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-10F519B39BE7DE75DCA410077773A2015A476A759
SHA-25668DA9ACB603CCFE79748E701FE0C99BFB354DB7A0472A1EC24B44685DA9DCC5A
Key Value
FileSize7841712
MD5173EA09A904876A880DA6DDFF704B461
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-11B0EB8520F01A15DAA770B430C5727633045CC94
SHA-256E87CE710302414980BD815DA54B199A14D133FA499BB6C3284E5F9FE45B5056A
Key Value
FileSize8230116
MD5E745BE4948E5B72C0099F6D2F292B2DF
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-12A8B30A4A32691B8CC85F10206D0D641DE91AF65
SHA-2567B7924F24DC5CCEF5D6BE5CBF1E3916A32D1E4C9644BA3C8C756F6554B8B3EE3
Key Value
FileSize2813062
MD556A892114A2BDFA4FBB16E02EE8A9908
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-1328859174D33D4D1EF96B52709382D8A2B43C6A0
SHA-256B86DD41F41C92C5925F30AB1BD41E6C21585CAA43D158F7CBCCDA2C90E095487
Key Value
FileSize2932816
MD597F18C1010908C04145213CA57061D35
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-2build1
SHA-135321933C8A2F112EE006A17E6FEDAEDD93CF692
SHA-25697BF5A03EC3AF71654A8E6069A79212C6FFDFA5CF11978117295DDEDF188EC15
Key Value
FileSize1667774
MD51E7535A4C46D8D18E645758902F8C9A0
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.5-1
SHA-1463F13A077B201BD6ED972F1D35D3BEDBEF676B6
SHA-2567A8DD5145661E53FC0E8E346E9A21AA8A504D38B05AD73729B2D851D69ECB541
Key Value
FileSize3231774
MD596451C26AA40112EF6A6B4C74DD402F3
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-146D899A4C6BF7E1FC3D55A7C08EC52A958A4ED4F
SHA-25620009AB865BE7C30F2173A8E49DD194C063D23CBAB193F82BF27FB581C20C038
Key Value
FileSize9828016
MD5540BB1BB0929252982177DB5E723CF36
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-14A61DF9427A59F3B2E34061450125248BB32BDAC
SHA-256E7EDFF000F7FE3B81F06ACFB98633264447B98534430ED9C3218C9B3F14CDB4C
Key Value
FileSize2530598
MD5A33E2715D8C07DFB712376F70A6B956A
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.1.6-2+b1
SHA-14A98609073372E160E3C0E6896D1BF7E9AED81B2
SHA-2560FCFA0D65410EA10A9CAFD4A310816DBF63B1E34337DECA8F34CAA1731801A3A