Key | Value |
---|---|
FileSize | 1840456 |
MD5 | DEC76155DE85F0C578B042AA256A986C |
PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
PackageMaintainer | Ubuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com> |
PackageName | python-cvxopt |
PackageSection | python |
PackageVersion | 1.0-2 |
SHA-1 | 87648982E166AF23FD76A6D7154DFF0E3AE74041 |
SHA-256 | 17350DCE71D427B806505700EB01D58848143F5C1CC048675F8708C66161609A |
hashlookup:children-total | 97 |
hashlookup:trust | 50 |
The searched file hash includes 97 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
FileSize | 445 |
MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
Key | Value |
---|---|
FileName | ./usr/share/doc-base/cvxopt |
FileSize | 897 |
MD5 | CAD6E0ABED96D43BF642EB9273BF8F1F |
SHA-1 | 02420D85C5115E7CA1D03CC20DA14992EB80654D |
SHA-256 | 38F54547C2E74F57E87973242DD743D162281EC8F4A96CC808076EB5C83BB79C |
SSDEEP | 24:6tAyp0aJbWGfxyq8ciKKSuCYqZxpNqDEx6AYqLNm438SsqCSdVlE:QKCbuq8ciKBYKzDxfYaNm4TjxdVlE |
TLSH | T10911231C916235BC451271CDC78119108F3815A9720B63994C7844B233CB9D9937F3EB |
Key | Value |
---|---|
FileName | ./usr/lib/python2.5/site-packages/cvxopt/fftw.so |
FileSize | 24768 |
MD5 | C19085F7CB60A8428638CA31F3AB5738 |
SHA-1 | 07822544E8F137DC0AB292D9D1DE88139A5FA358 |
SHA-256 | D07B5B12613310F9BCAC8F143C71F588AB5CC30F5D7F7928C3396647D48F2099 |
SSDEEP | 384:5rPOufG5z1hqChZhwb4NpZZqbN/jMPgXhV18aKn3CL++JIG/:ZfqZfX+b4NpZZqbN/jMIX1j |
TLSH | T136B2B763B71D0493D0672DB077BB6781175CF14210A98467331E925A3BE39920E6EFEE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/changelog.Debian.gz |
FileSize | 1626 |
MD5 | BA0577A95AEB6245EB16FD75D42DDD4E |
SHA-1 | 092DBACCE11D6F43595879695E7CF875788249B8 |
SHA-256 | A7799FAB153F08EF9EB56129CC29E77F60433717C0285954AF733E8E2640D18E |
SSDEEP | 48:XZeE4nl406akPDSaM3sWZkegxOVazSPHmWpMWD:86a8DSaM3stVxLaqWD |
TLSH | T1F9310AF354C96D1CF8AB5E3D6852840E5A70AC064CBD79A907284C33052BF13D9C12C5 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/roblp |
FileSize | 507 |
MD5 | 8E97815A4E277B3CD1E8D952AE976FC2 |
SHA-1 | 13924DCE887C4C503A497F2B2471D4B664A18D0B |
SHA-256 | 7AA7BB6CECAC6D5E26EB1A85141E4ED74C6ABD98C29B54BE28D460862EE5F09D |
SSDEEP | 12:He9v7DWn7HBtu5nld7lyl/lZPGGg2IFaZ6N2F+BNSWEg:+N7u7SZ/7lM3g6ZQ5bAg |
TLSH | T1D5F00E0D7400BCB09ABAD8D08CCC1A103672228B0A713D03345C47CACBB86707EB3F86 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/lp |
FileSize | 1115 |
MD5 | D616F95108828979A9C44CE61EAE879A |
SHA-1 | 16ED4BF0622E105A1B1781B066FA35C9EF9FE0F2 |
SHA-256 | D6C66D7E487AD150B8F0CB16C62C9DCACD3D62D1693673D73780F16D3883C9E1 |
SSDEEP | 24:+dI17kF7SqKtpy9L0dGACrYuUw9vu0Trfk:+KyMqKtKeGLrzUw9vuJ |
TLSH | T1B3216B0EBDCB70248D7984CED4ED06552AA2426C29F33EA3A61DDFB29091A55403BB59 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.4/site-packages/cvxopt/fftw.so |
FileSize | 24768 |
MD5 | 6A0D7F8121417C6AB3E2800662B9334A |
SHA-1 | 17E1D437635050394D79F0063C5EF81333647AF3 |
SHA-256 | CF91777E848A105F8BE3D03AFBFEB6B1EA9F242D0DBC0EC1DF0F3112EC941A67 |
SSDEEP | 384:5atAG5zFRqyh1h0P4NFZVGbJLjQP8r4V18tGKn3CL++JIL/:5aiqJ3LqP4NFZVGbJLjQ0rwyD |
TLSH | T1AAB28463B72D4443D1572CB067BB67C12B5CF44214A98847331E926B3BA39520E6EFEE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/normappr |
FileSize | 685 |
MD5 | E749E8DF21478A2B5B7AF27C62AD7A19 |
SHA-1 | 185809A572BBFE878F7C6B256785A71D1CAD4D82 |
SHA-256 | 8EDBE8ACF65DD52BE582FAA32538CA8512A76062C4B4A838D341EBD1724E8D81 |
SSDEEP | 12:HeNSnjo7DWQ7HBtuOWuNhYrkffigmxKkTDb2o6vVSRRxGH5snfwGPYsgwG/slww:+NUjo7V7SJuNOwfqgmxKyGlvI8q+AH |
TLSH | T1DE017B0CB521B9012BC7CAE9D1DC2B508F7011A2092C64A534AA2F810F6B6B87CBADD6 |
Key | Value |
---|---|
FileName | ./usr/share/pyshared/cvxopt/printing.py |
FileSize | 5488 |
MD5 | EAB0A295B19EB27159EE15762F3322DB |
SHA-1 | 1BD77447CB8A245461F5AD0BEBF9300028E12132 |
SHA-256 | 5A83D8C8DFB5EDB1E3514E584C3C96B6172CA9C44810F5560032CAC12F8388E6 |
SSDEEP | 96:PSPzR5w1we2/SfGczwtQ10HS9MizYu/UCtgGt:67R5w1weaSfvwtgUSqizYpCai |
TLSH | T132B11049A571327AC18F056B5CDA404F232BCA97771895303A1E63E90FC36B697B0FB9 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap8/centers.gz |
FileSize | 1952 |
MD5 | 5022806A6B75D75234A66500A5DFE687 |
SHA-1 | 1C021C71C8786BB28395DCD8E342F3F341FDC3FB |
SHA-256 | 018F3AB3B848851332FF46AE85957BA7AB5000AE1DF3DCF099543FEFD6A38085 |
SSDEEP | 48:XbAu07/kKZ//F9fOwFS81pvgLjEONVuX4cVdxRdc/Y:D8ZZ3F9LFS81peLu/Vdxcw |
TLSH | T140412C349C94668109A50CA7F3EE004007FBF68AB98FD512B46798C229CE42C49E9AE9 |