Key | Value |
---|---|
MD5 | 1A3B6315B5A6E3E7EEE69A3340788E21 |
PackageArch | s390x |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 1.fc21 |
PackageVersion | 0.15.2 |
SHA-1 | 8484AC1DCBDBA411874E37B839624B33EE434B29 |
SHA-256 | 57FB64381B9CDC8BB182D87EC7927F14DAD039A9F4A9777124A382C53A285BA6 |
hashlookup:children-total | 906 |
hashlookup:trust | 50 |
The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py |
FileSize | 17601 |
MD5 | 856C9EB5C6357A8E978BB27ED478B14D |
SHA-1 | 0001980ED073FFA12C4D97EE33F9FC4D4A9FF043 |
SHA-256 | 95CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72 |
SSDEEP | 384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu |
TLSH | T18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py |
FileSize | 13952 |
MD5 | 67B38A5B19534C15626BEDDA27CE70D0 |
SHA-1 | 000C0BD44626C1E94A98B9CB8615101BC35C180F |
SHA-256 | 526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492 |
SSDEEP | 192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7 |
TLSH | T17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/utils/tests/__pycache__/test_utils.cpython-34.pyo |
FileSize | 5588 |
MD5 | C870BCE3578C76FCC37E2B78F90793A0 |
SHA-1 | 0101AF35DDAED3FA0B9BE8460CEDC773E473D2E8 |
SHA-256 | 056ECBE83C9975BC8AF8F16D8E3F380D0FD5C6AF54BDA387695ACE8277BD8DE5 |
SSDEEP | 96:npd91ltKn3j3NgTzP5gt4feBnoOtcVXPcKmEChqbg1jmvBxDpyCq/LFT7ng4rBqJ:Xdtqj3Ng/P5EVccbECytZxDpy9/LFT70 |
TLSH | T180B1128227C2894FF920F2BAE07523158EF7F6496F515B491AF2E03D3FC87442936285 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py |
FileSize | 4865 |
MD5 | 919283D95801BDB1582E6768ADC62A65 |
SHA-1 | 0145D31CB950A8CC679300AF4CF93EC48DE5D612 |
SHA-256 | 64C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3 |
SSDEEP | 96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW |
TLSH | T176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py |
FileSize | 1207 |
MD5 | C21A69A2BC54F263E69035C048095865 |
SHA-1 | 016D65381370139D98DCC375AACCF083CD195B82 |
SHA-256 | 657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17 |
SSDEEP | 24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ |
TLSH | T1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/datasets/tests/__pycache__/test_20news.cpython-34.pyo |
FileSize | 1946 |
MD5 | 3502840C6A30457432920CFE052FA5ED |
SHA-1 | 01D22D0F56747A15B2AAFA0025A64359BFC40014 |
SHA-256 | E39FAEDE2B095945A6D45BBF04746CCF967355794E6E5FE05D47D601C857621D |
SSDEEP | 48:AMPtgV6cQ9FmzMQ/2nk54gdZk5KrfRnSF0hJpn:TaQmzQk9IUZo0ln |
TLSH | T1F941CD856382CBCFE164F674713463165DB3E0A9BE44A3C61AE6E53C3FE4381985020A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/__pycache__/cross_validation.cpython-34.pyo |
FileSize | 52321 |
MD5 | 7074B90185ACE30811C51ECC9A8E3975 |
SHA-1 | 0200C2881C92C56D74D99039219FAACB6AB142F2 |
SHA-256 | C188BC52A02086BB9944C823A2958872D9AD4846DA09DC131E5EBD37A4A89AA9 |
SSDEEP | 1536:GF2Q022raApPRizPKTyNL05rKK0PeQyhj1AHO3ZaWtUAvd+Kn:e2tRrfiPKOK5rKZPe5SK1uqAq |
TLSH | T10633F842F382092BF652F2F550F85601CBB6D52F6A402325B5EED5382FC6A70677E2D8 |