Result for 7F57F76B76734F861803B5722414EA43F61EA0A4

Query result

Key Value
FileName./usr/share/dart/cmake/dart_planningTargets-relwithdebinfo.cmake
FileSize923
MD567C4E74CFC086BB168903589886614D8
SHA-17F57F76B76734F861803B5722414EA43F61EA0A4
SHA-2566248B831FFF6CA3A2F3F05FC82AA2235AD7F9BD21C9716E22E09A6F2B51BFD0B
SSDEEP24:x3m7dS0qUMYA7HfyFIBHFfr/rQkhJFJhfriyjUu:FJUMRKmHFf7c6FJhfhUu
TLSHT1E411CE721FC50DB712D7EEC1B6851104C1B5E2BBC74A3D5E058D2179019261E253E42E
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize12068
MD5912F02135C41C34B14E1185EF49B4390
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-2build4
SHA-12C7672B063E033ECB176409425F19F5329F7EF32
SHA-25678E116257FCE0799D96CEFB0D22F25F4D4387508D22A5BBD336F4D3D5CC8B78B
Key Value
FileSize27596
MD5807758C1A1FC0EAAEC60B9969C62046C
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-11C3BFFFC557FE708985164FF5681D321371DD50F
SHA-2564AFE78E409F162B398C0BD34D7129A4D02DB9AD2838E7742FD79FD050FA035F5
Key Value
FileSize12064
MD544D5A5565A64B8687E8F71E19040BA20
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-3ubuntu1
SHA-103A0AC0B6F5DC3E462BCF1D0EEF8791F53FC1A7F
SHA-25636D659275246F7E3806ECD9E609B569F6FE35C12F2566D0C8620BDBDDAC0B50F
Key Value
FileSize27520
MD595787F7FDAA22E6FE1DAF3D568184DDC
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-2+b1
SHA-182ACE082F91954E6DB659DBCACF8F1F4314F4BDC
SHA-256A5A6899FA63298F1FACDDBF54A515E84C4834E192BE5DA65C4844E15575EE348
Key Value
FileSize27600
MD5831A9ADC6CF7A1B0568AE19BDF6B63AD
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b2
SHA-164FCDDC5EB1DEBBB57ECD106402C73EB18E6E67E
SHA-2564C2E7EF46002D4AF05951ED38EC50B183FA5756FB7F4DD4B43BE8A3C99ADB78A