Key | Value |
---|---|
FileSize | 2035376 |
MD5 | BA74C45147C9C77EE44C3E4BDB12E077 |
PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-cvxopt |
PackageSection | python |
PackageVersion | 1.1.3-1fakesync1 |
SHA-1 | 7F473363B54445226FEE8160EE0CA1B8A3D1B529 |
SHA-256 | 332C33E935F2A632673802351C9A8D7063CD781947B997CF387DD2F8A1A164FA |
hashlookup:children-total | 100 |
hashlookup:trust | 50 |
The searched file hash includes 100 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
FileSize | 445 |
MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/cvxopt/cholmod.so |
FileSize | 284452 |
MD5 | B8B8BC338D4C4A5FB8CEFF8481F5C807 |
SHA-1 | 05509715723A55180F00B8C02759834AA2FE9D19 |
SHA-256 | CF6E618DD0BD47FFCBE45AAABF3F354922E209A5D4911FD8B73C60CC607B61CA |
SSDEEP | 3072:7GHTnWizHALmgRhqT7iI7lcY49N0ghjklMgwwiEP264F6CPCMmWtOaTHA+RaRqcA:vCYk2OlONdjWFHY+uOaTtlcvwCcYm1RV |
TLSH | T1C4544B466F6E019BE0920FF4252F5BE0E76DF40422E0D9A5266DF36B1BB1E750087B8D |
Key | Value |
---|---|
FileName | ./usr/share/pyshared/cvxopt/msk.py |
FileSize | 30303 |
MD5 | BE75B79CF584BCE72E192EBA9F18795C |
SHA-1 | 0973A4BF52618DFC6A43690840B0A405B77DFE6A |
SHA-256 | A79578F461864CEDF023EEB5E62E086A6FF384DBC9F33772396BEC757B9A5A95 |
SSDEEP | 384:K7R5stI/7kyl/sdF48C/eQsweUAq/MlXiI/l0kwCkHI/yr:Uvstkgyl/sdF48ODsweiaXik6kXkHkW |
TLSH | T11CD2830558400D3AA2A3817D8CD7CC097F6195633D8B2D7A386C91B86F1B737D7B87AA |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/regsel.py |
FileSize | 3149 |
MD5 | 437919296D51AC8F69D12500C0807F42 |
SHA-1 | 097BB7690701B72F1ABB505DCC1016A792BE9EC9 |
SHA-256 | 24429B539050989ACBB789680C3E5E10574C938435FDFAB373A23F7C0BA58B01 |
SSDEEP | 96:S3HRpoF7BL4lCI1wz9WAdB+73DXLv18byir:G7lCvRK3Db98bye |
TLSH | T142516544F4423C76865BD1A9E4D134204F2AD4272D1F289AFFAE3E888F478F54674389 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/cvxopt/gsl.so |
FileSize | 10788 |
MD5 | D78D763F4AAD797A0653D8613483BEB7 |
SHA-1 | 0B593B8F83AEF1D714C6569B99097EDDA848F68E |
SHA-256 | 5ADE16063CE4BC6F217ACF4D4B7F61CFD2456A21E21D85BA8842B8FC46D4569A |
SSDEEP | 192:DJsIEgpzBuzbEAQLQiW5deDy5aliMZ6dKb:1lzBukk5ADy5aliMZf |
TLSH | T126228562F3170897C9962FB842FF4340975CD900A99AA3FB321D539A37716241E7ABCD |
Key | Value |
---|---|
FileName | ./usr/lib/python2.6/dist-packages/cvxopt/gsl.so |
FileSize | 10788 |
MD5 | B417A43A92B76205067D240A8AAB95F6 |
SHA-1 | 0B7823AC26EF4388F46B97FCF082B48F1087390B |
SHA-256 | 83108F065B4FAB7D1A4593426A95EC822D968C50539DBDA8260F38B4CC11EEDA |
SSDEEP | 192:GeJsIEgpzBuzbEAQLQiW5deDy5aliMZ6dnb:vlzBukk5ADy5aliMZS |
TLSH | T1B3228662F3170897C9962FB842BF4340975CD900A99AA3FB321D539A37716241E7EBCD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/consumerpref.py |
FileSize | 3991 |
MD5 | 5CCD74DD7D1E5423D4C8C18F3FEFCC2F |
SHA-1 | 0FB481D08091F23B0622C13CC9F8ABFB75FF9BC3 |
SHA-256 | 806DD9B8F6944C06A04A87D8FB2F986747E900D0136FFCFB5F40CA007D98891B |
SSDEEP | 96:AJOmZEEFIXIZJj0SRQwC5Aw212g0SRojzhze:AImWCIXIZJj0S+wCCXgg0SiVe |
TLSH | T15D81EC03127AE9344A07D7FEE5913310A92DD8EB6D1A3886306E0E875F175ED6232D5F |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap9/floorplan.py.gz |
FileSize | 1507 |
MD5 | 3D46A3E0091B6C5456B860784E4ED58B |
SHA-1 | 10B5C849601281E41F0E47BEA7D21D09AAE4391A |
SHA-256 | B3D430325563926C6520EFC4BB2EF20814B6811390A6A6D86832690D27874061 |
SSDEEP | 24:Xby2zMH0eOxdTGRnLyIkbUNICSbQ8bd9iwZgbd0a5YmStsd/8y7BPL7wvBT7:XbrwitG1vNuQ0iw0+a5HSQ/z7Za7 |
TLSH | T1FC310A927C3839084128FE4A0E861EEF602EC01F68A120A1347E301B9F096C780E53E9 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.6/dist-packages/cvxopt/umfpack.so |
FileSize | 458784 |
MD5 | EE83A4AA614E15EE22A5623513487A02 |
SHA-1 | 1304828C9E42332C1FAE77B6F2533C9D6029CEA5 |
SHA-256 | 00EC0F82B2ED3291D11F6E2EDB06FF3FB9651D4189D132F1035629DFFF26637B |
SSDEEP | 12288:sEB5RQKjHdwBnVs8MulH3p2MR7ej+exj+i0:vxdwYQ5Q+M2 |
TLSH | T1EBA46B49BF9A00E3E0734EB06A2F57E5B77CA98134E68469632EB7072671C30654B7CD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap8/conelp.py |
FileSize | 815 |
MD5 | EA54E397E3093B100C5BBF14C3A4E06D |
SHA-1 | 14BC88EA42FD67A8DCA767FADCAAC178D8332816 |
SHA-256 | 949E33AE7959C59A90D10159DA32363FDD36BB226DE58E1F3A4569FB46433DA2 |
SSDEEP | 12:UIFEa7NQBQMLt1YcTYeul+RHbq4Gn+1G2rAoDo29gzKaneSnYtfszECro:UI57NEnZful+xua/A8mKank2vc |
TLSH | T1AC01D49F91873CF4432E8B74A0471D1467B6C83979D73188387E8E2DAB3DB8496ACE54 |