Result for 7DA9DDB40180D4B3E85E2AC0195F571C255B70AC

Query result

Key Value
FileName./usr/share/dart/cmake/dart_planningTargets-relwithdebinfo.cmake
FileSize933
MD564785DECFF4D96C519E78B0FA1F4A633
SHA-17DA9DDB40180D4B3E85E2AC0195F571C255B70AC
SHA-25626E7FD55A70F71D4B0B3A42864685E3725CC882A7EC9B3090CCB58B58BD4162E
SSDEEP24:x3m7dS0qUMYA7HfyFIBHbZfrSrQkhJFJfZfrIjUu:FJUMRKmHVfWc6FJBf4Uu
TLSHT13311CEB21FC50DB311C7DED1B6855200C5B9E2BBC75A3A5E058D267901A221D2A3E42A
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize29204
MD54295C3F70BF66ECDA5D2556ADFBFD2C1
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-1A61A93832C968781B0BCA441082CB28F70E9C78A
SHA-2560F70F079DA74633495F3548B600124922DBDB71468A5A6BAD3D6D046F090F9EC
Key Value
FileSize28900
MD548257580574170E425BC86BEB0742FCB
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-13756CF0CCB0ECAF48A33802489479A95EC2AB1C4
SHA-256A214782A41185AAC0AF4EB60A5F5B0BB5B827AB1255426CA40B840BE894B929F
Key Value
FileSize29248
MD56CE8F1A96ED4B9DF83D9A466AAE88CB7
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-10718E886395AB5ADE30A5A86B3B20ACE6BCFF7ED
SHA-256CF7C7B44162BFE4D7BCFFDEDC2560120C3024EA879197A9F77AF8CFFA0C1253C
Key Value
FileSize28956
MD563FC5DF2C217808E3A596D72DA2D4C2D
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-18A21758C05ACF5C41C76A88C98885D7654B9372E
SHA-2562BA62D79C39140A4B0C332045071438FDB98082E21E8735AD12B86AB1E8A0204
Key Value
FileSize29248
MD5C9C623DFF231E1C71D37A82E6CDC32B1
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-19F4566F64210DB7C989B71EAA7DB71F79C8F5D88
SHA-256EEFF3A8F2169D8D4E19F9C4EAE5A2050C9EA2AFFA262CCA024929B3C6BA3EF6A