Key | Value |
---|---|
MD5 | A3B0BF6DA049BC153C311CF8545E1DA1 |
PackageArch | s390 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python-scikit-learn |
PackageRelease | 2.fc22 |
PackageVersion | 0.16.0 |
SHA-1 | 79D2A817F0AF635EAE5511F8512D89BBE9B96B50 |
SHA-256 | 1EA343E02ADA3862F436A8769CF3A2DF2148AD3EB9F117447C3DEE19DA848E02 |
hashlookup:children-total | 944 |
hashlookup:trust | 50 |
The searched file hash includes 944 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/cluster/hierarchical.py |
FileSize | 40213 |
MD5 | 8445D44F4F9E4D4112DCC21A36D037F7 |
SHA-1 | 000C3C854269C2922BE1C06595F3E880851D30D3 |
SHA-256 | E9F414A812CF50C6FC8061E0C0D971798F41FA8326ABEF670BFE139617C27AB2 |
SSDEEP | 768:b6CfhXuUcGwQogk2J3If3V4Spty5kccGwfoPr22J4HDGV4r2o2KKkPkGwkelh7pD:b64eUPzIf3V4Spty5kcP1rqHDGV4r2o2 |
TLSH | T19B03B722660423715B8790924E7F91A7E34044DF9F5320793DAD92686F12B68F2FFBC9 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/site-packages/sklearn/gaussian_process/correlation_models.pyo |
FileSize | 8295 |
MD5 | 4C04A0D332C6CE2A87C0F758519DB7F1 |
SHA-1 | 00ED2C175AE4DE1B95EE52D621F0B66DC232F0DD |
SHA-256 | 558CC9AEC64B99BDB49359B6BFC9A7641265A54DDFBBA593226BE201D9B6E043 |
SSDEEP | 192:mCFI85Qp5v2WV56PvL2TTxmoKvGrskFZjvwa65wx1vw3j5rdRsB:rFIfvvuvL2TQvuphvwapvw3u |
TLSH | T1C80200829BA9076AE1D281B074B26403D965D07B7A92AB00369CF4B43FD1F70D93F3C9 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/site-packages/sklearn/tests/test_kernel_approximation.pyo |
FileSize | 7209 |
MD5 | F470BD469EC17372AFD69BE10E698704 |
SHA-1 | 01360A854772AEB6E03F0F672B31B544C33BB44F |
SHA-256 | 9458D11DB183D8FC2E71C871A516B0D6418B8236BA051EFF71086D51945AA00C |
SSDEEP | 192:y+w8J8JkU9iVrSTf3eEy5a/+e1QySlMiQ3NhbIFqI+81:yAyfAOTxy5uQySJElp81 |
TLSH | T1F9E14281A3EA8E47E0B02A3C60F0531BECA5F576A500776133FCE6793AC9369D51E385 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/neighbors/nearest_centroid.py |
FileSize | 7219 |
MD5 | 3F05ED5457FCF69C422C4EB5F5D86CA4 |
SHA-1 | 0164D287CCF459DEB314C9B84916163D69BEEE13 |
SHA-256 | 0A2CAF710C753B10E6D10F95CF1D2E91CD430CCF9CF37EB0B95A300A138040D6 |
SSDEEP | 192:zLmCsu7Ej7Mvse9Du2izWTOgxMW2MB7lxXB:/maELeZu2iSO+32MB71 |
TLSH | T1D5E1B5166B061B3AC787C46396CD495BB746863B9364182E3CFD52642F0142CA3FFDD9 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/site-packages/sklearn/externals/joblib.pyo |
FileSize | 909 |
MD5 | 4946AAEF8F439639290D99618F3CA383 |
SHA-1 | 0167D0D3BED46EBE2D05F41C241FC690FC14DB8F |
SHA-256 | 7EAAA90E98ED3385354F73CE073D861F9F4CD3C0A5A9B7EE87D20A67E319C16C |
SSDEEP | 24:IbvfuWggXOqstUA/Bjha2ezkRrxsIVzPMteWQt1yQb0saLj:cZOqix9apzkRZEtJQt1yQb0tH |
TLSH | T164110080873A4263D66E863778150143C6E5B47B3652C3A81BD9FAF776DC30485263CD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/site-packages/sklearn/random_projection.pyo |
FileSize | 21136 |
MD5 | 7525ED7A2E3FFB7BEA72E5D8BFCBE524 |
SHA-1 | 01BCC30F2CABF8291E4CD1301AF1B7B381BEACE5 |
SHA-256 | 836BCCBB70D337329BF93D1D00BC92AF295B675EAFDF1C2DA95248F016033F8C |
SSDEEP | 384:iQIVMlqFdVdMrFuODgYZFgxv7uW9PyM8fgwf824Tb//INHoVs4yJ0OmarE8V1tTL:NImKdVKrFuODdZFgv7uW9qMtR9TcNHoU |
TLSH | T1329295017B84437AC2E28571A6F66943D6F9F0B7A682665234ACC0793FE1535A13F3CE |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/site-packages/sklearn/utils/sparsetools/__init__.pyo |
FileSize | 348 |
MD5 | AEDF64400C93884A5EB3283CAA0050CB |
SHA-1 | 01FF6B7936B5F36986F2E099507E22FD3B5FE09E |
SHA-256 | E58FEFA2D1A5B64963422420188006AAA143914F095F74E444F667344B22F477 |
SSDEEP | 6:Ij/k2lBETS/x+LyXLxsOBo38L44klT/UVlle29Y3xmDrkA8eiQRajz:IbkCCOlb3+3a44klLUV/e2fcpQgjz |
TLSH | T1C6E026C4D26C1B27C5FE8236A411560381E8D973665305823A4860BE2DD8616863B68E |