Result for 78EF4AFC049071EC5E371A1EA75873D29D4DDE17

Query result

Key Value
FileName./usr/share/doc/python-sparse-examples/examples/Examples/poisson_test.py
FileSize3911
MD52F648FD8B7EFCEA7CF3CACE18D334985
SHA-178EF4AFC049071EC5E371A1EA75873D29D4DDE17
SHA-256704DEDDC6AD6C9E3D875E40757A1AE0BD3DA5CA56725B63D17AA5208D91373B2
SSDEEP96:O5YYyKonyoWyGF3llaG5aqL44aULluaULKEQaqL/:NYyKonyoWyGFOGs64jgl5gKEr6/
TLSHT1B381EE002C792617C276C8699D86AD95EF21645EDF6FB8003D8D19ADBF4B153473CF42
hashlookup:parent-total6
hashlookup:trust80

Network graph view

Parents (Total: 6)

The searched file hash is included in 6 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize155452
MD57FF6DA8A0AF9FEE213CBE546A737DC91
PackageDescriptionSparse linear algebra extension for Python: documentation This package provides documents and examples for python-sparse, a set of sparse matrix types for Python, with modules which implement: - Iterative methods for solving linear systems of equations - A set of standard preconditioners - An interface to a direct solver for sparse linear systems of equations - The JDSYM eigensolver . All of these modules are implemented as C extension modules based on standard sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for maximum performance.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamepython-sparse-examples
PackageSectionpython
PackageVersion1.1.1-2
SHA-1EF52BBFE3AB25B291E8AD958AC52634C179194E2
SHA-256192F6D2ED3F25469B6595DD43F780DA5CB920177EF221070B0A29C433AE11788
Key Value
FileSize155284
MD5BA58B7CBC5C1BD6755880F85C049D91B
PackageDescriptionSparse linear algebra extension for Python: documentation This package provides documents and examples for python-sparse, a set of sparse matrix types for Python, with modules which implement: - Iterative methods for solving linear systems of equations - A set of standard preconditioners - An interface to a direct solver for sparse linear systems of equations - The JDSYM eigensolver . All of these modules are implemented as C extension modules based on standard sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for maximum performance.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamepython-sparse-examples
PackageSectionpython
PackageVersion1.1.1-1
SHA-139C2761FD3C67DA396C7F855DFDF08608E95A9DF
SHA-256CD0741B95DBB7CC707EF2BB06C88439D70947915F6B2F997B7631DDB49F9EC66
Key Value
FileSize150416
MD50EA0664A3C2B962D211E5BFCBBA3C6B9
PackageDescriptionSparse linear algebra extension for Python: documentation This package provides documents and examples for python-sparse, a set of sparse matrix types for Python, with modules which implement: - Iterative methods for solving linear systems of equations - A set of standard preconditioners - An interface to a direct solver for sparse linear systems of equations - The JDSYM eigensolver . All of these modules are implemented as C extension modules based on standard sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for maximum performance.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-sparse-examples
PackageSectionpython
PackageVersion1.1.1-1
SHA-1BFE19DBD1FABE6FFA0D3500052765DC521409357
SHA-2569CA250CBC0C9E13565F34108C38FCF705F2857685C664D730AF5AAC248A1B16A
Key Value
FileSize146888
MD5F0461AE78AF7F480513335C5F918006C
PackageDescriptionSparse linear algebra extension for Python: documentation This package provides documents and examples for python-sparse, a set of sparse matrix types for Python, with modules which implement: - Iterative methods for solving linear systems of equations - A set of standard preconditioners - An interface to a direct solver for sparse linear systems of equations - The JDSYM eigensolver . All of these modules are implemented as C extension modules based on standard sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for maximum performance.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-sparse-examples
PackageSectionpython
PackageVersion1.1-1.3build1
SHA-16D0693302CAABBB976B7223548CF03B335944827
SHA-2561EA03F162A28D4ED10B1CAFFDE185EAF3AC0726BF2284BA2BBF0411A7418B9C8
Key Value
FileSize151602
MD5BA8F6E07E4275BED5D2614D88D29BE65
PackageDescriptionSparse linear algebra extension for Python: documentation This package provides documents and examples for python-sparse, a set of sparse matrix types for Python, with modules which implement: - Iterative methods for solving linear systems of equations - A set of standard preconditioners - An interface to a direct solver for sparse linear systems of equations - The JDSYM eigensolver . All of these modules are implemented as C extension modules based on standard sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for maximum performance.
PackageMaintainerAdam C. Powell, IV <hazelsct@debian.org>
PackageNamepython-sparse-examples
PackageSectionpython
PackageVersion1.1-1.3
SHA-152402B6FB6D751101ED097CDDFE4FCBF947F3DE3
SHA-256AF62358059FAB9A622B5B9F85CB4EB41D00F44B1E42C52726F2B9EE3D6D01973
Key Value
FileSize146952
MD5BE8DECB8C10024ADEAFBDE915E78B382
PackageDescriptionSparse linear algebra extension for Python: documentation This package provides documents and examples for python-sparse, a set of sparse matrix types for Python, with modules which implement: - Iterative methods for solving linear systems of equations - A set of standard preconditioners - An interface to a direct solver for sparse linear systems of equations - The JDSYM eigensolver . All of these modules are implemented as C extension modules based on standard sparse and dense matrix libraries (UMFPACK/AMD, SuperLU, BLAS/LAPACK) for maximum performance.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython-sparse-examples
PackageSectionpython
PackageVersion1.1-1.2build1
SHA-128424E83B1398FA3CB108EC82695366A2F2D8595
SHA-256512DFA84CFE89B79D301347074C00E844FEF235537220672059F0E3DFBF10861