Result for 6D783C41D3637EE908A74AF975CD5CB0477FA1B8

Query result

Key Value
FileName./usr/share/dart/cmake/dart_collision-odeTargets-relwithdebinfo.cmake
FileSize963
MD5842ABC2F585C801A020F712D3C207BB3
SHA-16D783C41D3637EE908A74AF975CD5CB0477FA1B8
SHA-256EEDA2C25D0A3FE816E8DFDAE31498ACC491601B1A18CD1BE3676CCDEF9593D53
SSDEEP24:x3m7dS0qUMYALvfgtIRvOHIJ5h5N5KHITjUu:FJUMXOakAUu
TLSHT1DE11CC150F8C4AA782E7ED453CC22164F036DBEA4ECA790FB045279E2290919012E80A
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize24800
MD5254FD7631AA90634DC1D9A1C8C122664
PackageDescriptionDynamic Animation and Robotics Toolkit - ODE Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the collision ode headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-15C44992A2236C06623221BEFF508C8E9EB71C0A4
SHA-2566F7F323750A76FE9F038D9137E9BCE28B43E73A5A6381D0E66F57D8AA83B4959
Key Value
FileSize24728
MD59E3AD9556DDCCB15240C6AC25FC9D8B8
PackageDescriptionDynamic Animation and Robotics Toolkit - ODE Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the collision ode headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-1C3304555AC68AB941AC34D992FFF10121B04B03A
SHA-256B973386FE42F0F6318E71EC48CD11F839DE13BBE2E7CCC0CF784D69417A0F5C1
Key Value
FileSize25084
MD5CE8CEF42ECD27A9962A2D728919D38B4
PackageDescriptionDynamic Animation and Robotics Toolkit - ODE Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the collision ode headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-14420CECF10BDCC5EE880CD41E096427B86C061DC
SHA-25612B4552FE4655BAF2917D43F36D9E0FD29F66EDAE2E01C9A424B362C0F806E1F
Key Value
FileSize25012
MD5CE79F2084F3E21C63A386ACEE7CC54D6
PackageDescriptionDynamic Animation and Robotics Toolkit - ODE Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the collision ode headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-1E3188AEBACD96FA0B6A8034A6D1294C5DF964F7D
SHA-256848A4903B3871FA040B06D4B9BB6E4F952509FB26720C462989798DBAD8EA239
Key Value
FileSize25084
MD5984637FC5DC490D115CE8CAAD7034365
PackageDescriptionDynamic Animation and Robotics Toolkit - ODE Collision Dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the collision ode headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-collision-ode-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-1182DDAF3057BA697DF694913840A3F07B8D4DFED
SHA-25694910C9D2E5819670C5E940552675D955FF3DC7896A046FF917CA1059C726407