Result for 65E05D22F687B73CB3972784B40B040264E9397D

Query result

Key Value
FileName./usr/share/dart/cmake/dart_planningTargets-relwithdebinfo.cmake
FileSize923
MD5177825A0D34823A55DB1F42523000950
SHA-165E05D22F687B73CB3972784B40B040264E9397D
SHA-256C8EB83F8CE7CEDE5D6123524BF70C8B969795DE594EFC2204E57B06E91CA2B2E
SSDEEP24:x3m7dS0qUMYA7HfyFIBHFfrSrQkhJFJhfrIjUu:FJUMRKmHFfWc6FJhf4Uu
TLSHT1CB11CE721FC50DB312D7EED1B6851104C1B5E2BBC74A3D5E058E2279019221E253E42A
hashlookup:parent-total6
hashlookup:trust80

Network graph view

Parents (Total: 6)

The searched file hash is included in 6 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize29248
MD5D4931DB8D27DCED03074B5B288DC2145
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-168FC0C1F46FA801568419FDD4E1349141C5F5B7E
SHA-256CA0AB57A8FFC7DCD3AF4A546B8B5B154C8A2151AB7C40924FC0C94E4CA0F9767
Key Value
FileSize29196
MD5A674F0829E2CA4EAE8DDDB3A2B0C9DCD
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-1C1DA9B68F60953283374122E51E5032B8EC94B3E
SHA-25682A46F63CC5C70C67EFC1978DFD8E6E88A2787E0BC7BB80F17C13974789E0567
Key Value
FileSize29248
MD5B4F51C3872A77B0618EBC13FB448372F
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-1CD15A61C0DF595DB3417103860A5CC205B69B44A
SHA-2563142B3E84F245EDB5FA3B4D8CE449242DAB3AD47612014308450E00A51A18D3B
Key Value
FileSize28956
MD5BB601C9565925FD1062C76488BED726A
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-145083D26EF8A6E6AFBAAD99EB4461BE4F64B988D
SHA-256DC8C92E82A7E776CF9185D8BF9C92DBA386BB9B2289CFC835C85CE8ACC686B86
Key Value
FileSize28896
MD5F62BC82624F876ACAA61682B366CC082
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-18046A578EF18C975600AAB942B6605ACE2A738BF
SHA-256D16732614E0B62696F595C9D5B95CB5D5EC79FF94D9B01F5513C15718B172886
Key Value
FileSize13184
MD5AC6E9E15EC9279C5C3B3D72F45ED3ADF
PackageDescriptionKinematics Dynamics and Optimization Library - planning dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the planning headers and other tools for development.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamelibdart-planning-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-1DDB0B36D3B221B4A7DE3AC5D09762A508D46F9A3
SHA-256870406653AE6DBA581640C377A957E92A463CF20E781F78F0042E63B6EF088B5