Result for 64A838CC237A9DF962EE599C829550053C599F44

Query result

Key Value
FileName./usr/share/dart/cmake/dart_external-odelcpsolverTargets-none.cmake
FileSize1000
MD5EBA7C6DC3D734E26CC6366B1D58873E0
SHA-164A838CC237A9DF962EE599C829550053C599F44
SHA-256A42B2C90C7A87F034E6A833DFF84011CAFB3CDF036915443E8C7845C28F2B2C9
SSDEEP24:x3m7hK0qUMYA/QU9iIl7y6jolr/YMN58/NjoXjUu:F4gUMly6sQdMUu
TLSHT1FF118C334E851ABF0783FE6294A09114D33087F3AB5FAD25C7C95F16A5B3A98050F88D
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize34472
MD555CBF570378D67861ABC5F9D92A14FE6
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-1C207A3867439457B3336B7843B1C2F795C1BB107
SHA-256DCE56FD060E96823316B1F8F49E97C5D0DE00F371FC034360406BDB3BE292020
Key Value
FileSize34476
MD5B06A59184881C96B6DC3758F410F20D7
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-11DA9C32AEB539C805833CEECBC7B78AA02561036
SHA-2569698887D91FB2F3616466C00527D43F7F3A5D25D06B19BE8E6DEBB7C91D04BCE
Key Value
FileSize34408
MD5543A51FE1DC6CE3917F55CA50304491D
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-1988EFA19C4EF62ACE3214E53E765BA61F89CC3C6
SHA-2564D91614BD1C033C516F6A2BA8A71672FC6D7224B9FC2AF8754239E6F1E6433D7
Key Value
FileSize34384
MD5CB8555D2EEF10B04AFD128C6A1971329
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains odelcpsolver headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-1EFF020690F22B4B0A6622884743A2816843679A1
SHA-25690104EFB4E894BFD2DC3A8800E38078A4355F8E9748CC76E6E3DDAC2446D8838