Result for 5EEAD092155F1D7DA5434CB586DDD1A773ECD99D

Query result

Key Value
MD5767A4326CEC11A15EA719F7813EFC50E
PackageArchaarch64
PackageDescriptionScikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython-scikit-learn
PackageRelease1.fc21
PackageVersion0.15.2
SHA-15EEAD092155F1D7DA5434CB586DDD1A773ECD99D
SHA-2569C004EAB2833A4A0DD95A2ACF788B49B1817B534C5AB272F88DBF4A00194614B
hashlookup:children-total906
hashlookup:trust50

Network graph view

Children (Total: 906)

The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py
FileSize17601
MD5856C9EB5C6357A8E978BB27ED478B14D
SHA-10001980ED073FFA12C4D97EE33F9FC4D4A9FF043
SHA-25695CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72
SSDEEP384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu
TLSHT18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE
Key Value
FileName./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py
FileSize13952
MD567B38A5B19534C15626BEDDA27CE70D0
SHA-1000C0BD44626C1E94A98B9CB8615101BC35C180F
SHA-256526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492
SSDEEP192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7
TLSHT17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/ensemble/tests/test_partial_dependence.pyc
FileSize7056
MD51A392AB491B0876F61650F6038170E8D
SHA-1002419306404806E3DD60025F92C41987DADB3FE
SHA-25649EC3366B520F9E68531FD88842E4A49EB47041ED83138FB4DB1E283A0A57432
SSDEEP192:FBa4Tp2QraMiqLjjCHg3jC3+U2uAmII6C3f3SKJD888pC:F7kwuEIj888c
TLSHT141E12142A3D5DB7BC1B212BAB8F4421BEDA9F46B2B892700517CC43E39D8755C12F784
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/ensemble/tests/test_bagging.pyo
FileSize14670
MD5D9A2E5D7AC76D27E9D0CFC161E667681
SHA-1003A8029AC9FA95074A0569187F6A63E82F410C6
SHA-2563E2EB2CEB84175C775BB431A2EA8D157EA429F988C8F88C0BC538EA83F0806D1
SSDEEP384:aJY+KxN7fKOPeKxKjv8zh9mDUNciTtCtsMthth8888T:YY+Kx9yOZxKAIDiciTtCtsMthtp
TLSHT1F2625081E3E18B9BD53113B59CF0125BAEA1F87BA105772502BCF87D3AD8724D22B385
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py
FileSize2407
MD56CCA3A2DFA57FF6AF3CF3A27AE22F209
SHA-101070C25205C477A297A7CCE48DA78871F64DD2C
SHA-256298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8
SSDEEP48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq
TLSHT1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py
FileSize1895
MD5A4CC2943F64D2730EF80B9504C583D19
SHA-1011BDEF5443BE65B5EC29C9D37FCEEC7206429FA
SHA-2562B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC
SSDEEP48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr
TLSHT15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py
FileSize4865
MD5919283D95801BDB1582E6768ADC62A65
SHA-10145D31CB950A8CC679300AF4CF93EC48DE5D612
SHA-25664C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3
SSDEEP96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW
TLSHT176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py
FileSize1207
MD5C21A69A2BC54F263E69035C048095865
SHA-1016D65381370139D98DCC375AACCF083CD195B82
SHA-256657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17
SSDEEP24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ
TLSHT1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py
FileSize1446
MD56C764C92907310B7717595E840304798
SHA-10193A74906128D26183FB66001B61CA5D447B865
SHA-2565D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D
SSDEEP24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs
TLSHT116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/datasets/mlcomp.pyo
FileSize3461
MD5D9C824CEEC69C260CA1042D388AF7600
SHA-1020EBAE10920869646ADDF003F4E65839F8AFB3A
SHA-256B241A985AFAC860EC24C48716E78D5865CCFD9F3E59FE8997D8740140A3AACE6
SSDEEP96:7Ds7QEVR5R3OLtHcODmW/FuskVRVz5CwoVM3gZJVEjlnfkC0hpl:385zSHcODHFuskRz5InEjRfkCkl
TLSHT1B7613481BB90C6779460547472B84113CA61F6FF624067913AECE0B81FACBA1A0BF7A1