Result for 5C8790320D69CBC084C762D361BCBCB630111C0B

Query result

Key Value
FileName./usr/lib/python3.6/site-packages/scspell3k-2.2-py3.6.egg-info/SOURCES.txt
FileSize376
MD5B54364E1084570412F9F0ECF24DAD0B1
SHA-15C8790320D69CBC084C762D361BCBCB630111C0B
SHA-2561D2F1B8071EA59AAE3C0FF8B764863066D1212BFE249550D97C4746A934B13E2
SSDEEP6:tZQ9yvRvXn0QNGTKPITKRTK4thGKTEHbK0gKuBWkWhW7WhWuRhWhWMEZJ1WhWZVh:tBvRvXn0QUGPdQ4trIO0PuOl6gWk8JcF
TLSHT15BE01252913B79C361ADEB859A1FD62F6D2334832E5BE455179441CED40CC42FB0E474
hashlookup:parent-total11
hashlookup:trust100

Network graph view

Parents (Total: 11)

The searched file hash is included in 11 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5CDBE8ADB9A9FC8DFE9577030B18A03D2
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython2-scspell3k
PackageRelease3.1
PackageVersion2.1
SHA-15BE774250BF57BA383FD55483A06AD22133F14A8
SHA-256D0EAE6F910D209711EBD584E0583FB907AE79D0E779DB72896382AA3C7985FAE
Key Value
MD54D066F6F67DC5DA530EBE884F8C3509F
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython2-scspell3k
PackageReleaselp152.2.2
PackageVersion2.2
SHA-1D8196E94DBF30BAD3244EC7DC2D72D87C055826B
SHA-256299164C12ED7D0FDCC5899AABBB5F226DBCBAD199A13C02C7E6D6F0B80EDD83F
Key Value
MD59D32610277001C82C7E2888F0970E8CC
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleasebp153.1.15
PackageVersion2.2
SHA-1B364D7D8B96C7945BB29FDCBAC9E78B0B82C79DF
SHA-256EFB867F5801E68695B002390E019C684BA777C5D356BB5E62867096076A3A133
Key Value
MD5433971E1D8961A7ED17D51AAA0E39498
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageRelease3.1
PackageVersion2.1
SHA-15C459A81B17A042B99894FC3F307F56E9A966481
SHA-2569C37871B835746B91A72E865715F498BF0E2901AB607E8827D7C4F4CAEDF3C07
Key Value
MD5F93AB8A94B310B2BA3209851B2962F34
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython2-scspell3k
PackageReleaselp150.2.1
PackageVersion2.2
SHA-14AA6C5DB12E52EC0BFCE9D532C7C339C85F68D20
SHA-256F091C5C59C100BFDF1C25B303DB7543DCEBA386CBD5A54B420C11018E9EC0B2B
Key Value
MD517368EE29DD579D498A10D2D2CADEE78
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython2-scspell3k
PackageReleasebp153.1.15
PackageVersion2.2
SHA-1A195FB920E2839C00C271DE56B9EED11058796FA
SHA-2569CE3CB136489868FCE914BEFEB08004EC2876F78BF174C07AB1C49240EECAC10
Key Value
MD5CA405AA1145D3B8711CC25731F54E860
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython2-scspell3k
PackageReleaselp151.1.1
PackageVersion2.2
SHA-137D72C38648449E81D43F0320429CE1B007D4A9C
SHA-2560052218026AF5516EAAE9FA2B65331DFC1777ECA18643C83E3746257818E042C
Key Value
MD50A07C2634E1B47A8CD132A3E1BB2BBDE
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageRelease2.3
PackageVersion2.2
SHA-11DAA2D0B8234C61E0BE2675286356DD97AF9B84B
SHA-25656DFF6F625F137C889A2E92928B1180C0E870A382A1403EAFB13A3BA6218716F
Key Value
MD5B4EC1225030AC46E0357B3913C25FE4C
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleaselp151.1.1
PackageVersion2.2
SHA-1ECA6901C3DC2BDDB60726BF883DDF04575BCD4A9
SHA-25614357068D825AE0A1F76CD6163E7B340EB82C5B6285D6C3C58815B96359EED29
Key Value
MD55EEED84C4B7417C8A2859CC6692065C0
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleaselp152.2.2
PackageVersion2.2
SHA-16F25052B5263E9514D6154AF0C816486D5827586
SHA-2565432B61AFC10CB80FCA36DD38507E2E1C7A6F025271C243BA68F7EE394E01FE0
Key Value
MD5CF49F3C9BB5068E79DA574F84CB0BC5C
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageReleaselp150.2.1
PackageVersion2.2
SHA-18E3CD4ADF14117A2F2DE5993115DC36E9A681433
SHA-25609698D2457AC0E1F32B2FF586BB0D079396D41F3A64EF9858B2A26C1A720FE36