Key | Value |
---|---|
MD5 | 932CD6AA143AE2FF89D2507DC3603935 |
PackageArch | s390x |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 3.fc20 |
PackageVersion | 0.14.1 |
SHA-1 | 58E6F1B10A611F5B0EF67712695683A7ABD1BC42 |
SHA-256 | 4DB274DD81BAE75DEC07B73240D2173A0122B96FB0B000A4A8F076BEF308C6F4 |
hashlookup:children-total | 801 |
hashlookup:trust | 50 |
The searched file hash includes 801 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/linear_model/plot_ols_ridge_variance.py |
FileSize | 2032 |
MD5 | 44A08C8EAB78FA8522617D143280CE43 |
SHA-1 | 002D35237E1045669AE711D219C5C7E2C828DF64 |
SHA-256 | DF23A76B9DA4857633A934C3CDEAC1FB3F1C3C0BFA5266F2CF148F22CC3F7240 |
SSDEEP | 48:4YOa+3VOPSAN5mAOxGwq0JcrsyPAhpa2b7TyJANfeK6AK/l:4YOTlvsmAOxGwvJdyP7ifmWeK6Ail |
TLSH | T15841861B62861B73A337942DBDB9329C7351409F79427CA57BFC61085F8172C0EB94B5 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/exercises/plot_iris_exercise.py |
FileSize | 1577 |
MD5 | 3CEE1240FBA2960897069B76B5637772 |
SHA-1 | 0116272B06B5037C5FC6E48E289CAD5FC1E6CC61 |
SHA-256 | BE809F9603D572D38F9B2B5C30FDDBC3865711F28480FD46C2EDFED3DB78BC83 |
SSDEEP | 24:/AX9SV6wq4Vxknvg059WbkKX52BrpH2sCU5tkLtmGvItyG4bxpZNbH/D:IXcVVVqrKX5m8lMtggGPbxfNz/D |
TLSH | T1F031201A904E337213C790BD82EB29846B5366234B44687A777DB7D1DF02764F239942 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.3/site-packages/sklearn/utils/tests/__pycache__/test_graph.cpython-33.pyo |
FileSize | 1223 |
MD5 | B8CA513E78BFA840F21CD034DF32CC22 |
SHA-1 | 01827C62734E0BB415BD52A8B98C62F7E9362FED |
SHA-256 | 3C3350889B8CD43E24B70E7F9410F5C6140EB08947C5860747F8A6CAEE011509 |
SSDEEP | 24:4UArIqJEVsSKjq5VV5Neq6HbJup9pKeauseGiMGJniP8tluLWvlxzef8iPJzen:2rTiKSKQVjNeq6NEcea7ecP8XyWv+f/4 |
TLSH | T1C121FE859BFFC2D7D37402B5A5311302CD66E9DBA902EB2246B0303C3EC4B720E5D854 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/plot_rfe_digits.py |
FileSize | 852 |
MD5 | 9103650C2F36397AB88DF835B34D38B5 |
SHA-1 | 02C0A867F5D8E9C34607BCE93EF5ABF7C6F495A9 |
SHA-256 | 9F282DADA6645094618C0A5BFA1913CC17F1384A2BBEC0B7B7783AB89CBE9928 |
SSDEEP | 12:ilgJr4Y/8OREMeyAMyfbyvmvA9NZfXALqSkAVL/KO5Oe4N6sYD:iqh4E8HyLyTyOEfXALCAVIGh |
TLSH | T141011E5D5220B7771DB758B582F5809319F20D3A2341622015A8CA658B82BB6FFF7A43 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/plot_kernel_approximation.py |
FileSize | 7974 |
MD5 | 92E29404D8F074E46F35C40F20766AB8 |
SHA-1 | 02FB35C9AF06F6F6872DFFCAAC0A51570D42B6A2 |
SHA-256 | BF5D973C48EC576C568FF9ECFB74EA75395EBF29B4D1C19AB82D210B6A4DDCF4 |
SSDEEP | 96:0X75FrUiJKIiRjQBdLdgooMgFYZygEqTgR/KYIOcITTmpsm51iuPztYi:+75FQiti6KYZkR/KYIOcITq1iuhYi |
TLSH | T17CF1E80B20E30B3223B7207C23DC21C7BFA49056E9975A3DF99D8654379AF21E276649 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/ensemble/plot_adaboost_multiclass.py |
FileSize | 3585 |
MD5 | 34017803563CB9F9B635C002523C75AB |
SHA-1 | 0322042E7BF79C438AD29D097C0E77A689587F33 |
SHA-256 | 50E1E9107975866013E5FFB4FA9033867E9BB126CC32959A3E9CC4E3E4204164 |
SSDEEP | 96:ir9H8frWUXgINfBhroMYbPXwW/K/oKR6m257TwDLj5dlTn2093:DC3iXR6mp1N |
TLSH | T1F07193258A666A3187B96CFECCAC526D3360144C9D22D009B5FD8F300F0BF19ECBA2D4 |
Key | Value |
---|---|
FileName | ./usr/share/pyshared/sklearn/cluster/spectral.py |
FileSize | 19089 |
MD5 | 7F39F2175913371EB02C1FC7AD23163A |
SHA-1 | 03C4601BEAD359C5B92ED2D0FA173AB399D8C9FE |
SHA-256 | E4FAABA262F99730C34B8078D83DACC8BF18776F391D8A9657004B8524E70BE8 |
SSDEEP | 384:M+X/Q0+fEqCC56so+IRrREezf61red3/YV7i/aD6VHnNW5ajWlFYV7wJC1S/a703:M+X/Q0kEqCC56soTPloret/WW/aD6741 |
TLSH | T17582D739394262379C87E09289FE20A68364058F8F537455B99DC6281F13E7873BEFD5 |
Key | Value |
---|---|
FileName | snap-hashlookup-import/lib/python3.5/site-packages/sklearn/datasets/data/boston_house_prices.csv |
FileSize | 34741 |
MD5 | 4F2F20AB8094D40E043FB575CFF5DCEB |
SHA-1 | 03C8B6B944A81D2615514F6C098B14F6C59BEEDE |
SHA-256 | 7796A48B7B1A203EB4BCC180097289A496EE5B1F0018A935192AFD1AFAEECA8E |
SHA-512 | BAD6C81AB5C8D6591F5F999246E760461B87BBE5E1C3EDACC41177C8F72D1084F28732230028FD7B81D36B21825BDD6F3A25B149022A58CDAC3337E77155D3F2 |
SSDEEP | 768:YOA878aSaM73XCaoKTxCDNOZpc76onXMwQjHl6eov:484aqSaoKTxCDNOZu7VR |
TLSH | T14EF2A676137B16CCF2408A1C9622394126F1ED2E7834E6889F4B946EE81DCF79574EB3 |
insert-timestamp | 1721655505.5531995 |
mimetype | application/csv |
source | snap:UXtarunTOMdX6KuVJXcYFrsrsojJ3LH0_3 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.3/site-packages/sklearn/__pycache__/cross_validation.cpython-33.pyo |
FileSize | 60432 |
MD5 | EEC1174C0CB8E855AEC5DF0020D2A390 |
SHA-1 | 03CFF27DB59232AFD5DFC7EBADA46D0B69F6439B |
SHA-256 | 21A425823AF967013B2B70B4E5AD4EBD24E4CEBD92E4EAB9AEE8C58F0182A6CA |
SSDEEP | 1536:MoznLlXLIhRlmxMPDC2sxE0P5E2LUUiujqghjVV2dOGLLBXdFCx2DJXQdAliiP1:MQLhycLxr5XqhLLJ/Cx2DFQ0z1 |
TLSH | T1B543E781E76E06E6C6A50BB024B48251CFB2F93B5A402B1176ADE47C3F85A33177F395 |