Result for 57A930DAB9016F8A5A694FA7F91795988DE125FA

Query result

Key Value
FileName./usr/include/dart/gui/Trackball.hpp
FileSize3587
MD5258309B01DD4BCA806DD5D25F28643F8
SHA-157A930DAB9016F8A5A694FA7F91795988DE125FA
SHA-256DE1A653DA650AA8329206FD6BCF7BA9F3729B61E14E4836643D704CE77248C57
SSDEEP96:56rYJd0rYJTLx13A53PN6BKMTqNrITRTNma8Qt9V:56rsqrs373G31IKMTRRTAQDV
TLSHT10771778E21C29323E85392F463937CC5D21D60AAB512E60534BFC1046FAB91B6B7BD73
hashlookup:parent-total58
hashlookup:trust100

Network graph view

Parents (Total: 58)

The searched file hash is included in 58 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize25532
MD5ADF77367733E85CC21EBDE49C6293170
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-1097F35A3618622A5E54A347B2C619F41555ACC3D
SHA-256061D1CA58BE0C144EF5CE0ADB580FB7BF4A64CE4F3E2C790239A5B687ABF3C63
Key Value
FileSize27156
MD5A75641767DA16CD6F9693860BD7F2167
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-110D2E9B71890CFCE6EAF77A43323CFE588D5DA0B
SHA-25634F0DD2143C654ACE782E5DB8F36F66E835B2F191F98DDB553DE1337C6BEE9D1
Key Value
FileSize27168
MD5A8F683E59479E553021C499647BCBFCD
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-116643EEAA766B7D651157CE01236A947206EF6D1
SHA-25647347B703C1211624DDD9CB1369DB90DDB7E9D23CE9C52EFC2091D38E84FB434
Key Value
FileSize27100
MD58254862D36F3CBEB8B4CEA513CF824B3
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-118F9969910ED98815CF046BA7C2AF0B2C9DC48AB
SHA-25693162F05FD9576D9182433AEC3E31475CEA9113CA6FDB5D0F59469C5EAB2F777
Key Value
FileSize25560
MD565DBC354449963DDF35DED1D5731A7A4
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b1
SHA-11A9AF659EE23B7978FD3BA70AF22FE77DB290B05
SHA-256005B394C2FE2E358CE5803F56ABBE482F377C6EB2F099D3593635F578C5EBAAA
Key Value
FileSize27156
MD560F55970A2EC89DFB8C4C9295EDD2AE4
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-11AA044F24A62D736E030E459DAE25DB7FB0F1D4C
SHA-2568E906E35AD4BFB1CC95D8A50B8B22672FED6B1CEB27DCCA0424B882E865DEE18
Key Value
FileSize26832
MD53391C0D44AC31BF8D3D7CF2821938E77
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-11B6A44998170500AB4475AC7245BBE3CA01C3EE6
SHA-256178B63BD560D1CC5D8EA0C2A089C300FBB5C847C8EA1FB24DE651AF142BD5CA3
Key Value
FileSize27096
MD5D8F692D90FAACA5F8E322E6BCAAB9BD3
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-121286C04AAB4885675D80F96EDEA5EDBAD7C0B08
SHA-256731F69AC8A6D79EBD54D67D6139BE469F4863A21EA7111B01C2372D83ECE33FB
Key Value
FileSize25540
MD5D7E04B74E36BF5008FB2F4A0B3D444BE
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.2-3+b2
SHA-12C44A8157CC5BBED63771F846DEA8446CFC85EC1
SHA-256B0A0D148CF96336BD6FA7E111ABCDF33CBE5F3220C518A8D5931943DF781B549
Key Value
FileSize25460
MD510AA5FCFD6041DC4B2D6E03348469BBE
PackageDescriptionKinematics Dynamics and Optimization Library - gui dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI headers and other useful tools for GUI development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-dev
PackageSectionlibdevel
PackageVersion6.9.2-2+b1
SHA-133D2804C47670EA04607E630AD4A4399EAFB66DF
SHA-25641499D3E1E0B92D3E4FE7B56BD85F81981032769513706BA75945C64F13D0BB3