Key | Value |
---|---|
MD5 | 0C4F32374415CCDA8D571AA31F3D20B1 |
PackageArch | aarch64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 4.fc24 |
PackageVersion | 0.17.1 |
SHA-1 | 5513BD93A3C3B030CC6500A683EF48326EB21E74 |
SHA-256 | 13F962CFADEE43B02880D50748E7A8B387D2C1BC7A41D66A0C868B48D85D09C4 |
hashlookup:children-total | 975 |
hashlookup:trust | 50 |
The searched file hash includes 975 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/svm/__pycache__/__init__.cpython-35.pyc |
FileSize | 619 |
MD5 | 0C5A14B9679AA9899B24067AEFB62CC1 |
SHA-1 | 0021F4E3E7FF7ED6E32AF397EB59C3259D28D5FA |
SHA-256 | E9A4873E235081D0DD42AA53278E5966BDD2FA10A8136571F8941C8148FFC205 |
SSDEEP | 12:9zbCGkUWGnpbzU2aFBJZcBFQ/tPfwRKmksTb5MZ9XCm6lOsyrZRSiDUeZ:JCUWuURBJZVNuaKXODlR6A |
TLSH | T1A1F0A692873A97D0F839FB3A6000911812943597BE2E4603095E0CBA3EE3483058AA4C |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/kernel_approximation.py |
FileSize | 17973 |
MD5 | 2B4730A91CB8ED5575D1EF4A7BE5B252 |
SHA-1 | 0028A347DC05248423B93A39EEF5E0178F8BBCFD |
SHA-256 | F37397D32AA3E5C3C1694E45926566E58A79C9AEE42422CA093480A57798FDDD |
SSDEEP | 384:5Em1dK784+WzgQ4rUtOlgPYY77u7q7EvRdYJ5aKcMatdI0uow3u:5z1dKYhWzLoUtdv40EZdrMatdI0uoku |
TLSH | T1DC829415BD410A2D23C7C47221FE9643EE691463519610377EAD83982FA3C74F2AEFC5 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/decomposition/tests/__pycache__/test_sparse_pca.cpython-35.pyc |
FileSize | 5366 |
MD5 | ADDBD9654E580328D9728C47035E6D49 |
SHA-1 | 0066D563D4F7C98AF9889C0C64846DEAABF97DE8 |
SHA-256 | CC76E37B86EEC4B54915A71475840EDBA44FDAF5065ECDE968B96C2B7A04AC3E |
SSDEEP | 96:68tIy3+0nDCX1irQcCOdBHQOQQJtvlY1u7vCBLdVyFOBGkZcrgp7rkEYhUHSgg6Z:6k3+cUczJVu1uD8KgGhGt7T888w |
TLSH | T142B1FD91A7C2CE5FF414F2B9A5B847008EB6F84A7F01AB495BF1E4383FE5744A427208 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/decomposition/tests/__pycache__/test_incremental_pca.cpython-35.pyc |
FileSize | 7015 |
MD5 | 8CA6FD7CA60527C74BA0518C37F44ED5 |
SHA-1 | 01E908C72ADDA58651BA7B73E24A8C89963D17B2 |
SHA-256 | C589C6FD759CEC1538BB0353604B522F71C6F185BF17498BB30B7E39DE455650 |
SSDEEP | 192:8f2NLXNygMQCcPZ3fvxL/KzNH/GYK3NpZ+A+SP7ePaVtu63kH2foaGe2w:NJXNJlCcPZ3fvxL/6NH/GYwNpZ+AZze4 |
TLSH | T1EFE1BE90A7C7DA5BF424F37D94B412199EB6F66A6F0067045BF1E03D3AD4B50682B38C |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/feature_selection/variance_threshold.py |
FileSize | 2594 |
MD5 | 9062DD0314FFFBFBA3AE6A19467EE813 |
SHA-1 | 023D35A24900085224860FF4B84E53A8ABF5D2B2 |
SHA-256 | DA4F57333555985298D6F7C66232693B1747E60FCEDBA3D38F1F43E12F79C70C |
SSDEEP | 48:u2tg6W0NIaj15Gq/hr0uI1qDEAjKpSTqVKQ2tA2QZQXd:u2m6RNIavn/hr0uDEAjBTqVKLvQaXd |
TLSH | T1CD51030EEE164F1C6287C2F304CD6843CA5B496F8798683538BE72552F8056612EE6DA |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_cv_diabetes.py |
FileSize | 2527 |
MD5 | E72038F327EB1E9BE42A89248FDADDEA |
SHA-1 | 02B9832007B41F9CEDC0ADF47E8E74156A7D2F20 |
SHA-256 | 5C3E8CB59B8C3592B195A2372E1213A62FD9B27EB7664E8C51CF116BE2953E78 |
SSDEEP | 48:8RSBEU7vtHh44QdkCq1axlZFkmoKCQv73ZIpMm0MNLp:8KLQyCqk7kmzCQTXhMj |
TLSH | T1C751740DF1436B711F4A10F4B58990A03BA2927A6D1B7935786DCB5C9786FF20B324BA |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/metrics/tests/__pycache__/test_regression.cpython-35.pyc |
FileSize | 5017 |
MD5 | 486C7671A0DC33502DF6E772DA8ABB93 |
SHA-1 | 02E2341C9E78614D2DF6FE16E4D7EC87E350E23B |
SHA-256 | 2D5F81A29A1D23024AA2853170E27EAA6DB5AD30CF493358E59F70494CC7E73F |
SSDEEP | 96:3SFuH60bPqEeHMWVTgYGEKMjAnYKQurK88VCf7nBdwNyC9W18S8U:C0bPqEesWVcYG71niVg0X+8S8U |
TLSH | T1FCA1765393848D9EF429F1B8F4361302DEE6F018BF547B404B27E57E6BC5B851C1A28A |