Key | Value |
---|---|
MD5 | BCF32221C8DD22DF9CFE204375B750A2 |
PackageArch | ppc64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 4.fc24 |
PackageVersion | 0.17.1 |
SHA-1 | 547DB711D4863545256C4D84E1B956593497B713 |
SHA-256 | 76E3540F2E6683CF0BC08CBA78A3756E50A04EB5661067EBAA99481A5CAA6759 |
hashlookup:children-total | 975 |
hashlookup:trust | 50 |
The searched file hash includes 975 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/svm/__pycache__/__init__.cpython-35.pyc |
FileSize | 619 |
MD5 | 0C5A14B9679AA9899B24067AEFB62CC1 |
SHA-1 | 0021F4E3E7FF7ED6E32AF397EB59C3259D28D5FA |
SHA-256 | E9A4873E235081D0DD42AA53278E5966BDD2FA10A8136571F8941C8148FFC205 |
SSDEEP | 12:9zbCGkUWGnpbzU2aFBJZcBFQ/tPfwRKmksTb5MZ9XCm6lOsyrZRSiDUeZ:JCUWuURBJZVNuaKXODlR6A |
TLSH | T1A1F0A692873A97D0F839FB3A6000911812943597BE2E4603095E0CBA3EE3483058AA4C |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/kernel_approximation.py |
FileSize | 17973 |
MD5 | 2B4730A91CB8ED5575D1EF4A7BE5B252 |
SHA-1 | 0028A347DC05248423B93A39EEF5E0178F8BBCFD |
SHA-256 | F37397D32AA3E5C3C1694E45926566E58A79C9AEE42422CA093480A57798FDDD |
SSDEEP | 384:5Em1dK784+WzgQ4rUtOlgPYY77u7q7EvRdYJ5aKcMatdI0uow3u:5z1dKYhWzLoUtdv40EZdrMatdI0uoku |
TLSH | T1DC829415BD410A2D23C7C47221FE9643EE691463519610377EAD83982FA3C74F2AEFC5 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/linear_model/sgd_fast.cpython-35m-ppc64-linux-gnu.so |
FileSize | 151232 |
MD5 | 96D813C932F11C5C0C18E7BD52917E70 |
SHA-1 | 0066C1172EBD374E3DEDD0102775D6240096D376 |
SHA-256 | 74EFA3CD960C0352D7820483750792A426B629B8A8F27EDBAB3ED22450529B05 |
SSDEEP | 1536:UJjAryZq2V5h3o05BSWTCSRBr+OrIE2Aj5M2Qn0Unynu/de11Y/L+FZJesEy:UJjwyZqO5+03P5+Ormr0UOmqF |
TLSH | T15DE3F7E27B012E13D9481E79901A3BF4F65D2CA59578E1123A0F1B7B46E3BED198F213 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/decomposition/tests/__pycache__/test_sparse_pca.cpython-35.pyc |
FileSize | 5366 |
MD5 | ADDBD9654E580328D9728C47035E6D49 |
SHA-1 | 0066D563D4F7C98AF9889C0C64846DEAABF97DE8 |
SHA-256 | CC76E37B86EEC4B54915A71475840EDBA44FDAF5065ECDE968B96C2B7A04AC3E |
SSDEEP | 96:68tIy3+0nDCX1irQcCOdBHQOQQJtvlY1u7vCBLdVyFOBGkZcrgp7rkEYhUHSgg6Z:6k3+cUczJVu1uD8KgGhGt7T888w |
TLSH | T142B1FD91A7C2CE5FF414F2B9A5B847008EB6F84A7F01AB495BF1E4383FE5744A427208 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/decomposition/tests/__pycache__/test_incremental_pca.cpython-35.pyc |
FileSize | 7015 |
MD5 | 8CA6FD7CA60527C74BA0518C37F44ED5 |
SHA-1 | 01E908C72ADDA58651BA7B73E24A8C89963D17B2 |
SHA-256 | C589C6FD759CEC1538BB0353604B522F71C6F185BF17498BB30B7E39DE455650 |
SSDEEP | 192:8f2NLXNygMQCcPZ3fvxL/KzNH/GYK3NpZ+A+SP7ePaVtu63kH2foaGe2w:NJXNJlCcPZ3fvxL/6NH/GYwNpZ+AZze4 |
TLSH | T1EFE1BE90A7C7DA5BF424F37D94B412199EB6F66A6F0067045BF1E03D3AD4B50682B38C |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.5/site-packages/sklearn/utils/_random.cpython-35m-ppc64-linux-gnu.so |
FileSize | 142736 |
MD5 | A7FA89E229900D8509BED340CEAB3C81 |
SHA-1 | 02152EF679918796A23E82A70BE25BD52A872E40 |
SHA-256 | F13300F81A3F15389CBCCCEB9D6C3F7913BFA99A9B0F88AFEA672E2F786F4202 |
SSDEEP | 1536:ib/QE95vnfCb7tAHZRzkRMQvNatUDelzF:ibYM5PKvC5ORur |
TLSH | T1BCD3D5D27F112A13CA586974109B2FF8FA6D38755579D1123E0F1A6B4BE3FE8108F682 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/feature_selection/variance_threshold.py |
FileSize | 2594 |
MD5 | 9062DD0314FFFBFBA3AE6A19467EE813 |
SHA-1 | 023D35A24900085224860FF4B84E53A8ABF5D2B2 |
SHA-256 | DA4F57333555985298D6F7C66232693B1747E60FCEDBA3D38F1F43E12F79C70C |
SSDEEP | 48:u2tg6W0NIaj15Gq/hr0uI1qDEAjKpSTqVKQ2tA2QZQXd:u2m6RNIavn/hr0uDEAjBTqVKLvQaXd |
TLSH | T1CD51030EEE164F1C6287C2F304CD6843CA5B496F8798683538BE72552F8056612EE6DA |