Key | Value |
---|---|
MD5 | 60DF20DE3C40D17EF02D757AE5DDF78F |
PackageArch | ppc64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 1.fc21 |
PackageVersion | 0.15.2 |
SHA-1 | 531E3F8DAB2AAA6BEE9EBB9581F0891E76BF8AE1 |
SHA-256 | C573A3217D747F3A20E5FA8C64244D86FEFA27665D3EF49048035096FB343113 |
hashlookup:children-total | 906 |
hashlookup:trust | 50 |
The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py |
FileSize | 17601 |
MD5 | 856C9EB5C6357A8E978BB27ED478B14D |
SHA-1 | 0001980ED073FFA12C4D97EE33F9FC4D4A9FF043 |
SHA-256 | 95CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72 |
SSDEEP | 384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu |
TLSH | T18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py |
FileSize | 13952 |
MD5 | 67B38A5B19534C15626BEDDA27CE70D0 |
SHA-1 | 000C0BD44626C1E94A98B9CB8615101BC35C180F |
SHA-256 | 526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492 |
SSDEEP | 192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7 |
TLSH | T17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/__pycache__/passive_aggressive.cpython-34.pyo |
FileSize | 9323 |
MD5 | 6A859BD10F3F8C80CD2CBD15F16B1F6A |
SHA-1 | 0016C13D9A4FB1F11547D324C4F45EA8C0560AC0 |
SHA-256 | E8BCA4D29694990D0F4CA2D13AF060C11CE77D8EBAFD520F2956DC23901EC57C |
SSDEEP | 192:aILMlmGM7Q8Mc0wDZ35suybCvo5ul+nHST8lmGM7v8Mq1PEIpwkabOtC4:adQDMc0GPsLu2HHQ4Mq1PEI7N |
TLSH | T10F1273167F821B7FF857F6B994E51153C3B1642F8F92621838ED10292FC683265BE389 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/tree/__pycache__/export.cpython-34.pyo |
FileSize | 3606 |
MD5 | 91BB90D944878BDE5DD15701F9CC85F5 |
SHA-1 | 0078533A2915C869AF45200162EC5FD89167C022 |
SHA-256 | AAEAF1E20B3D2242EB4D4DB12DDE201857DFC7BD16AF99094333C1DA4560ADC4 |
SSDEEP | 96:Gwn3791W4/flzrVn1s2TLnopImJxEWQVDe6TioW:vnZPZDnqImJx9Ae6TnW |
TLSH | T11871B756ABC18A06DBD7D4F0A17C8217877AE40FA60633A0F5CCD4F82FC7B20465AAC4 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py |
FileSize | 4865 |
MD5 | 919283D95801BDB1582E6768ADC62A65 |
SHA-1 | 0145D31CB950A8CC679300AF4CF93EC48DE5D612 |
SHA-256 | 64C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3 |
SSDEEP | 96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW |
TLSH | T176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py |
FileSize | 1207 |
MD5 | C21A69A2BC54F263E69035C048095865 |
SHA-1 | 016D65381370139D98DCC375AACCF083CD195B82 |
SHA-256 | 657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17 |
SSDEEP | 24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ |
TLSH | T1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/gaussian_process/__pycache__/gaussian_process.cpython-34.pyo |
FileSize | 24893 |
MD5 | 1057F7B7DB292A21013A6E84422B4332 |
SHA-1 | 016EF15044B6167E7B45F655795464F3FFA74BBC |
SHA-256 | 3D430EA93C07651C35B100E74AD39DD809CE136726ECC6F89C8F61A5EAE27E86 |
SSDEEP | 384:9ilGMP4Flm6DOLu7rVI6dCL5HTVsIrOmoOcDnbkx6pkN4YQXIMN:te4FlmCOoUL55sIrOmoOanby6pkNIhN |
TLSH | T1BEB2E8862BC156BEF142F1B2B07B2145CE33C06B7592971179EDD5B82FC1B30963B29A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/__check_build/__pycache__/setup.cpython-34.pyo |
FileSize | 685 |
MD5 | 4693C1F6292807687AAC27291FEB6850 |
SHA-1 | 019362CCC69A40ED3C693DCC84BFEC919E7D3B35 |
SHA-256 | 8AA83FDA18F0D7C8C1CD62D93E83A60E94C58C477E3D557758282A15F20C56B0 |
SSDEEP | 12:S+IXC2MuoZmb4IWmj6HtE33/qMiMWAgAAR0V+GDhfxqhHkzhjw1MiMlq+:GOg6TifiMWoV+gpQxGhBiMP |
TLSH | T1D2012381438A059CEC1B06B7E03892158F79F1F67B90EB074F75F626BCD86880D53C05 |