Result for 521A51D15087F9086709C7FAF818D88D64A4C953

Query result

Key Value
FileName./usr/lib64/R/library/acepack/Meta/package.rds
FileSize1199
MD5D70A34F4F54A8D400D865A7EFDD31225
SHA-1521A51D15087F9086709C7FAF818D88D64A4C953
SHA-2563CA3E88954458A3A3D06DD22135DB303443E7EE1C56A851C1C77A9423319994D
SSDEEP24:XcQxqzUP+jKXcwolE0yWGl8N4WE9plWJ005qC7BNb7lHkRpgNA3WY0iGMDj3x2:X9MkXcrE00B9p9037BNb7+RD1E
TLSHT103210A4FFC60DBBAF780F370C9867363ED07411E4763AD94703EA1147180786140D995
hashlookup:parent-total1
hashlookup:trust55

Network graph view

Parents (Total: 1)

The searched file hash is included in 1 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5A035A4078E114E4EB103F34DCE9CC60E
PackageArchx86_64
PackageDescriptionTwo nonparametric methods for multiple regression transform selection are provided. The first, Alternative Conditional Expectations (ACE), is an algorithm to find the fixed point of maximal correlation, i.e. it finds a set of transformed response variables that maximizes R^2 using smoothing functions [see Breiman, L., and J.H. Friedman. 1985. "Estimating Optimal Transformations for Multiple Regression and Correlation". Journal of the American Statistical Association. 80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is the Additivity Variance Stabilization (AVAS) method which works better than ACE when correlation is low [see Tibshirani, R.. 1986. "Estimating Transformations for Regression via Additivity and Variance Stabilization". Journal of the American Statistical Association. 83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction to these two methods is in chapter 16 of Frank Harrel's "Regression Modeling Strategies" in the Springer Series in Statistics.
PackageNameR-acepack
PackageReleaselp153.2.3
PackageVersion1.4.1
SHA-134FA4AF00FF91F8C239900905456425A3CEA9D60
SHA-256D1BA9AAE3FBAC4591D3EDF7B0C9913AA5BEB1AB5B5D49F98A9384F54B64B5490