Result for 4DEF5054345C278D4A7257EC325552D158E8833B

Query result

Key Value
FileName./usr/lib/R/site-library/glmnet/data/CVXResults.RData
FileSize202
MD57A404BC6A255AC95A6CC06CF4FE6DDBF
SHA-14DEF5054345C278D4A7257EC325552D158E8833B
SHA-256F9EF3CF76777E3EEAA6D8207B391F3DBD83894D0B8795AF403015E138AA6F71D
SSDEEP3:FttsdFtfp1BfzSwhWIw2L7c/h7dqzNg/ZXBZTeuCI6Y6QCP1Wb5oHaEpIID0:XtgZGwAIws7OFszNg/ZXBp8IWPcS+
TLSHT1D0D022832228B078F0B10B3E81851D343008910B1A42528469AA2485FEC80A1CA42E16
hashlookup:parent-total59
hashlookup:trust100

Network graph view

Parents (Total: 59)

The searched file hash is included in 59 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD571E6911695FE5CD358381FE1837DD04E
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageReleaselp152.1.10
PackageVersion2.0.18
SHA-1014993F2B65FB9B93346002AE76A54F4289322BA
SHA-256FDA5D5E397F62BD30A61E00467B821104DA0F78AC0D3697A41307B7F56B04BED
Key Value
FileSize1424288
MD55150E710168FBA9468C4D531224D271F
PackageDescriptionLasso and Elastic-Net Regularized Generalized Linear Models Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the paper Introduction to Glmnet.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-glmnet
PackageSectiongnu-r
PackageVersion2.0-16-2
SHA-106B5C2B44BC66480C4D15A7D3CA46DA0E39D4045
SHA-256580D90130FA1CE3C9FD9E2CF04BB667E34C811B4AC6C76D9C36F96EB73BC5A17
Key Value
FileSize1573554
MD57A3291F17EC2B9EB21C413759AA8D01E
PackageDescriptionLasso and Elastic-Net Regularized Generalized Linear Models Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the paper Introduction to Glmnet.
PackageMaintainerDebian Science Team <debian-science-maintainers@lists.alioth.debian.org>
PackageNamer-cran-glmnet
PackageSectiongnu-r
PackageVersion2.0-5-1
SHA-108747630510E29644B3770496DAB9DE9E7B4B88A
SHA-256361831713A49595EDB1DFCC91500952A2B7B60937609654DE093FE86F4985CF4
Key Value
MD52979B186A914D0A670E7FB8FFE8E72EF
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.47
PackageVersion2.0.18
SHA-1115F2740A548A660807F9158B783AE9A9B0BCAE7
SHA-2566E7F819C818947DC5269938EB3CD2F02105A0D66D4E2EDCBD2DA66671F08660C
Key Value
MD5EE0153416AAC7A8581C323493E5F5BAB
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.6
PackageVersion2.0.18
SHA-1123B4F47FFA9E4A849CD7B1B4FFE28C07A448558
SHA-256FC94C8CF0E37BC2384EF8C32FD200D7F665A11A02D83FC6FF4F92EF442111674
Key Value
MD5F439485E260F07F8961D091FEEAB3175
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.18
PackageVersion2.0.18
SHA-11AFC1147F7800566C60BF82F871662B2F92EBD20
SHA-2564737A50A7843F82AC0AD815534E65B8DEDB782F931F96997F8841E1A2DCEE160
Key Value
FileSize1426652
MD5474FE11B21DEFC08868C007ADE887FEF
PackageDescriptionLasso and Elastic-Net Regularized Generalized Linear Models Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the paper Introduction to Glmnet.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-glmnet
PackageSectiongnu-r
PackageVersion2.0-16-2
SHA-1227E4606FD1F2DEBA47221E35E596C409B04CFCD
SHA-2565CFB05E5A69412AA780DC3464C922C4472C5DDD005812358DDD1F37F678427FB
Key Value
MD5C9F904FA1BDF623CAE8396C0749DE5FD
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression, Cox model, multiple-response Gaussian, and the grouped multinomial regression. There are two new and important additions. The family argument can be a GLM family object, which opens the door to any programmed family. This comes with a modest computational cost, so when the built-in families suffice, they should be used instead. The other novelty is the relax option, which refits each of the active sets in the path unpenalized. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the papers listed in the URL below.
PackageNameR-glmnet
PackageReleaselp153.1.1
PackageVersion4.1.3
SHA-127B93867AE1ECCB4D417F4517154114F35B9A824
SHA-2566AD689DB0BE8A7A847945EDCE2B37472E1DECD397D3DB950670AEB354F56D2FB
Key Value
FileSize1563746
MD5B127F6A6D22CD04A357A843EA999F9CA
PackageDescriptionLasso and Elastic-Net Regularized Generalized Linear Models Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the paper Introduction to Glmnet.
PackageMaintainerDebian Science Team <debian-science-maintainers@lists.alioth.debian.org>
PackageNamer-cran-glmnet
PackageSectiongnu-r
PackageVersion2.0-5-1
SHA-12A50FE6A35D00171A966DBBAFCE42A368A614F51
SHA-256169DC25484E5488BF8141657149A49DCB011A8EAE2EA569886DB528C90E31930
Key Value
FileSize1784572
MD5865BE0E276B721CCAB6ECAE06D652A39
PackageDescriptionLasso and Elastic-Net Regularized Generalized Linear Models Extremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial. The algorithm uses cyclical coordinate descent in a path-wise fashion, as described in the paper Introduction to Glmnet.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-glmnet
PackageSectiongnu-r
PackageVersion4.1-2
SHA-12B9D5C7977E69C0375FBEBECC1A9D377E1048D47
SHA-256827BE2B261B783CDF483E6B488512B1D3A9EDB35B73D592624E5C9EC94FF3547