Key | Value |
---|---|
MD5 | 1C82564E1B0A043FECEAA5F445EB6EC0 |
PackageArch | aarch64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 1.fc21 |
PackageVersion | 0.15.2 |
SHA-1 | 4C3EF65F75574E4835D511B43A3552C4CE605D33 |
SHA-256 | C63581ADED197E5C4B94668CC2C14DC2B31D088A56320A79A88A54A117239111 |
hashlookup:children-total | 906 |
hashlookup:trust | 50 |
The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py |
FileSize | 17601 |
MD5 | 856C9EB5C6357A8E978BB27ED478B14D |
SHA-1 | 0001980ED073FFA12C4D97EE33F9FC4D4A9FF043 |
SHA-256 | 95CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72 |
SSDEEP | 384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu |
TLSH | T18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py |
FileSize | 13952 |
MD5 | 67B38A5B19534C15626BEDDA27CE70D0 |
SHA-1 | 000C0BD44626C1E94A98B9CB8615101BC35C180F |
SHA-256 | 526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492 |
SSDEEP | 192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7 |
TLSH | T17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/svm/__pycache__/base.cpython-34.pyc |
FileSize | 22003 |
MD5 | 6A02A66835C3B3010A3C89AD9F65F11C |
SHA-1 | 00A68709AB584455F2CB780C377384DAC53CDFA5 |
SHA-256 | D22B949464322B051BF1F1BCB39EB9C1A3C638904EDDF1C55A0F7844F64F1D1D |
SSDEEP | 384:ll358CRK7opewDnDTJIydtK4/unilcsuDqB6RnmfJeDdpV5y8u85A6gudof2pyTo:1RRFfdfei5bUppV3z2koOejw2ZOE2h |
TLSH | T18AA29481BB836A3FF496F2B660B47242DA73D04B9E9117053AEDE0392FC5696D03E185 |
Key | Value |
---|---|
FileName | ./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py |
FileSize | 2407 |
MD5 | 6CCA3A2DFA57FF6AF3CF3A27AE22F209 |
SHA-1 | 01070C25205C477A297A7CCE48DA78871F64DD2C |
SHA-256 | 298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8 |
SSDEEP | 48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq |
TLSH | T1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py |
FileSize | 1895 |
MD5 | A4CC2943F64D2730EF80B9504C583D19 |
SHA-1 | 011BDEF5443BE65B5EC29C9D37FCEEC7206429FA |
SHA-256 | 2B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC |
SSDEEP | 48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr |
TLSH | T15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py |
FileSize | 4865 |
MD5 | 919283D95801BDB1582E6768ADC62A65 |
SHA-1 | 0145D31CB950A8CC679300AF4CF93EC48DE5D612 |
SHA-256 | 64C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3 |
SSDEEP | 96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW |
TLSH | T176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B |
Key | Value |
---|---|
FileName | ./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py |
FileSize | 1207 |
MD5 | C21A69A2BC54F263E69035C048095865 |
SHA-1 | 016D65381370139D98DCC375AACCF083CD195B82 |
SHA-256 | 657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17 |
SSDEEP | 24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ |
TLSH | T1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py |
FileSize | 1446 |
MD5 | 6C764C92907310B7717595E840304798 |
SHA-1 | 0193A74906128D26183FB66001B61CA5D447B865 |
SHA-256 | 5D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D |
SSDEEP | 24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs |
TLSH | T116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/ensemble/__pycache__/bagging.cpython-34.pyo |
FileSize | 28472 |
MD5 | C629C5B6656F297B1528BE6F1B766932 |
SHA-1 | 01EF6DA545C8D4148FA03056E6B85BDD2C63BDCA |
SHA-256 | 8622DAC357A70A48EA594283CB9FFE328F05B0C09593E10ED9895134C3430861 |
SSDEEP | 768:rrXCXa+KQ7VWLaTHkiuGXf5D+eQtb+MBpW:rrKIQoazuGRNQZ3W |
TLSH | T10CD293187780162BF91AF2B694FC01459F71E0AF96929326B5EDCA742FC1630A57F38C |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.4/site-packages/sklearn/metrics/tests/__pycache__/__init__.cpython-34.pyo |
FileSize | 151 |
MD5 | B379E11AD8645261AC2035E0ED9185BD |
SHA-1 | 023010677F3A9328A1BC91A5058402709055283B |
SHA-256 | 6EDCD078EEBF54303B65A99A9F34B88B03DD7A660E56B30359B7C25741D24EC1 |
SSDEEP | 3:xOW/l+leh/kreWWehzENBKDVWrz4AzIAAWy6BRkcTitn:Xtaeh/18AGMrkAElbcD6 |
TLSH | T14CC09B60462393D6E67DFD756510431114C5CD71B547D7937988454D7D056944D32405 |