Result for 49D2B43224392B8D830360C203856A3C2349BFB1

Query result

Key Value
FileName./usr/lib64/R/library/glmnet/Meta/vignette.rds
FileSize257
MD5606D9D933BD7E4DBF80A07EC92414989
SHA-149D2B43224392B8D830360C203856A3C2349BFB1
SHA-25671666C493D113FD5C34B40AF9B28F717E7CC1D2DC1274EEDB262025BCD6C2327
SSDEEP6:XtQD/aNru5l4W4YBUS0Y4DwsrXOUguyNq5jePvJn5M/ukoId9ULVRpc/:X6D/dl+YS4Wwrd65iHp5ecLFc/
TLSHT1B0D0952615765C4D654617F44501F21D024377284172F774D301D7E406C40FDDCB2BC2
hashlookup:parent-total11
hashlookup:trust100

Network graph view

Parents (Total: 11)

The searched file hash is included in 11 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD580212388957C539523F12F93D333CDA0
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.48
PackageVersion2.0.18
SHA-14A12F9780A2E2B83C6962797D0D50C1F08D49416
SHA-256447C6C89B3192B7010B845219E484AE0752013ACB71139B8ADF401DEA993AD65
Key Value
MD571E6911695FE5CD358381FE1837DD04E
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageReleaselp152.1.10
PackageVersion2.0.18
SHA-1014993F2B65FB9B93346002AE76A54F4289322BA
SHA-256FDA5D5E397F62BD30A61E00467B821104DA0F78AC0D3697A41307B7F56B04BED
Key Value
MD5913CA99019D6C21897051A4F8991C327
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageReleaselp151.1.41
PackageVersion2.0.18
SHA-156CD6BD10D0F9CB45C1D6C37F4D3D233E46EF875
SHA-256C86A01688E6B2C7BB06E70980844BAD85E86EC8675BD45CC17CA7BF469198627
Key Value
MD5A56DDEB85D20CF4A4C3B57E7793A4751
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.16
PackageVersion2.0.18
SHA-1B92BBAE52A44F6F081719708E20F12B25188E661
SHA-25678FA90A2A115F9EE723D58CFF00533C0CAFAEF24A9E5C8FC6C2EA09302B02A8C
Key Value
MD590F06A6E3B8B9372FB58602D8572B029
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageReleaselp150.1.26
PackageVersion2.0.18
SHA-1FF20AAA2DDA4E88A6A144191EFA122D866B6E842
SHA-256464A4CE55769E5D0418F36F8E528A6A09978E02940FD1318F32197A21EAE9B3E
Key Value
MD5EE0153416AAC7A8581C323493E5F5BAB
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.6
PackageVersion2.0.18
SHA-1123B4F47FFA9E4A849CD7B1B4FFE28C07A448558
SHA-256FC94C8CF0E37BC2384EF8C32FD200D7F665A11A02D83FC6FF4F92EF442111674
Key Value
MD5571029F64179F5B5BB47C7F2A3F0B8EE
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.48
PackageVersion2.0.18
SHA-13CD98CBB0B3721AD87E9E8DB05CBA41D5FD0D092
SHA-25653C3E6F7B1E01B47B2E7519750173ED3BBD17BBB88175E0F26248D5655B666BF
Key Value
MD591DA86A9B3321A44E36D5F8569466FBA
PackageArcharmv7hl
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.43
PackageVersion2.0.18
SHA-1CAEA1F34B30C6BE3823C6A47CB82E131F49AB805
SHA-256A39B6D1C1F209934534991345E6F6B4BFC7F635A7C488F24DE1A6ADBA6CD8E8F
Key Value
MD52979B186A914D0A670E7FB8FFE8E72EF
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.47
PackageVersion2.0.18
SHA-1115F2740A548A660807F9158B783AE9A9B0BCAE7
SHA-2566E7F819C818947DC5269938EB3CD2F02105A0D66D4E2EDCBD2DA66671F08660C
Key Value
MD5F771A4532EBC20E41886CE036F74B0FF
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageReleaselp153.1.9
PackageVersion2.0.18
SHA-1CD9AFF826B08965B25B59570F553D6D8E4A6E44D
SHA-256AD2C1AFDD756D15842EB8465E8AFA2623B44A9988A69097A3E48A82AD690D235
Key Value
MD5F439485E260F07F8961D091FEEAB3175
PackageArchx86_64
PackageDescriptionExtremely efficient procedures for fitting the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, Poisson regression and the Cox model. Two recent additions are the multiple-response Gaussian, and the grouped multinomial regression. The algorithm uses cyclical coordinate descent in a path-wise fashion.
PackageNameR-glmnet
PackageRelease1.18
PackageVersion2.0.18
SHA-11AFC1147F7800566C60BF82F871662B2F92EBD20
SHA-2564737A50A7843F82AC0AD815534E65B8DEDB782F931F96997F8841E1A2DCEE160