Result for 45E20A281A8BA8A888B57E07EA27A7E0BD201125

Query result

Key Value
FileName./usr/lib64/R/library/econet/help/AnIndex
FileSize306
MD5E9B86F19260A3233F6D2B6A0D500C098
SHA-145E20A281A8BA8A888B57E07EA27A7E0BD201125
SHA-256E5676D56C0C68D163C9955543B6FB3BAA7FB9A09935B9DA18B17B0FA4ADCAA2B
SSDEEP6:RwRsiH/iKK0rscH6C4zREGCug5/+Z5/wtGpLA1VqAfiWJQOqPg:4H/pKifx4FUgZ2m0iAqROyg
TLSHT192E0EC18A8D65A7081787C90B6913D5C9CD9B85648F7BDE157D1E40530B6CD7C83E0A1
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD55626D3A60E38201F0276E8C2EAC52442
PackageArchx86_64
PackageDescriptionProvides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the 'econet' package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette.
PackageNameR-econet
PackageReleaselp153.2.2
PackageVersion0.1.94
SHA-187A376379965CC56E913613670F1BC2811366E49
SHA-256D4B5486BFAB5BE1BBE8F96DE06AC67C3F4D435A2E99B7A8B43EE0039CA4ABEF4
Key Value
MD548D6F0EF1AE8E561F7F5B6540BBAC1D1
PackageArchx86_64
PackageDescriptionProvides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the 'econet' package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette.
PackageNameR-econet
PackageReleaselp154.2.1
PackageVersion0.1.94
SHA-1000972A1F806D67429B5F164A146276B75851B14
SHA-256A5E5EC71E68CAE815B5759BD8E3B356C74736597C2E9F5DAD2DE93F9D71BAF7A
Key Value
MD55425CCD01CDD498FE0A736C44788154B
PackageArchx86_64
PackageDescriptionProvides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the 'econet' package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette.
PackageNameR-econet
PackageReleaselp152.2.3
PackageVersion0.1.94
SHA-162D0706A2EA927B080BA992E8CBF02B1AB1B62A4
SHA-256F551D294F03192EAC2D114E70917F42583DF0A5BDC608D093A36925B3D36BCDC
Key Value
MD5F4AE731DCB699AC5F97832067473273A
PackageArchx86_64
PackageDescriptionProvides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the 'econet' package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette.
PackageNameR-econet
PackageRelease2.16
PackageVersion0.1.94
SHA-1C6EF9AC0723B8F5153EDC9521A85F39F2CA3035D
SHA-25676935B36C1ADDDDBC3BBCFE931CAD0EE3EC5CCDCCFA3489F9CE51C9DB47B5847