Key | Value |
---|---|
FileSize | 3109708 |
MD5 | E7000B55376AD3241135FD947E6D9FE4 |
PackageDescription | Large Scale Machine Learning Toolbox SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing. . SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This package contains the static and the modular Python interfaces. |
PackageMaintainer | Soeren Sonnenburg <sonne@debian.org> |
PackageName | python-shogun |
PackageSection | python |
PackageVersion | 3.2.0-5.2 |
SHA-1 | 45156560C9F042CD03A613195572BCFEBBD00F6F |
SHA-256 | 666A00D2FC804252A6933CE53EC1DAE177ADAE4C644670450F38A66C8178729F |
hashlookup:children-total | 358 |
hashlookup:trust | 50 |
The searched file hash includes 358 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/evaluation_director_contingencytableevaluation_modular.py |
FileSize | 1179 |
MD5 | 8D47DF72D4AB20F34D14CBFD3FC5224D |
SHA-1 | 01D5D6CA66FE294142091B0319C0CA627F0CFEB9 |
SHA-256 | 21C1DA61FA4478A04A28931D420222F5278DFAFA964B153BD7466D303531505E |
SSDEEP | 24:m/r0F+VEMov2AIXvw+QIJtd+AdtAi0Dtr0LK2Ry6BNg5bClGT2v:mDFVSDA4Ov0ZAg5bCl82v |
TLSH | T16C21C1EC72F3A159B057615E23D054E620BAF9FB364C0C185AA907A80CE1D52F72783B |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/labels_io_modular.py |
FileSize | 351 |
MD5 | 714CB87DE72D2F8A0F4E653D5D147513 |
SHA-1 | 02A4E6D418229E226A6373EC2B95915D281427C6 |
SHA-256 | B466C5217835F9535DF2397ACF0CF2EF6FC57A1B098AD9302FA9A214EABB917B |
SSDEEP | 6:HWaH6u++1kvL2F8Rz03K6AyYFj56ZNY3Syk0c/Ni6FrJe018BAq2KVMqAYh7In:HSx8626Rz03KfywENG2iur80aPHx7In |
TLSH | T1D2E026EE95AA9131C0961D66BA904EB0A2FB6DA4338D646BD6843E04914ADE77C60221 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_static/kernel_simplelocalityimprovedstring.py |
FileSize | 1008 |
MD5 | 36D2A1CF2E6B62BD080C836A1134A7B7 |
SHA-1 | 052B1365BAB17FF631C423B104DBB9DD8E482D15 |
SHA-256 | 84FEF609810201A23355D148C4E6D686D1BBDC59EAFF301F77D8BD84837C457D |
SSDEEP | 24:Nar0yC2Rbv5BZ6+C0qvVgdBgv5DEbag4aubag4adsOFGXXn:swyC2tA01JbanrbanSsLHn |
TLSH | T13711024E935FC783ECAA246CD14A05102AF484DBA0A14E245789D32082E70C7B3F87CB |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/kernel_sparse_poly_modular.py |
FileSize | 951 |
MD5 | 0E21F90115DE3F95FDE30A48A3CC3425 |
SHA-1 | 05B504BFCAC30D285B622500926D2CB6E34D88F9 |
SHA-256 | 02D1302FCFA9C434B77F6C01F446878F147ECFE375D6A63502A620D963A1AEBF |
SSDEEP | 24:qhrkbpsJaJfrb3xSts2n20SeIT1dThL4vXTk4MKjn:MkWEN8tlSe2HavXPMKjn |
TLSH | T18611908B86E7F012F87134AD64E82C5B66E7E48E0B4351099748C7201B979C3F4AF1DE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/serialization_string_kernels_modular.py.gz |
FileSize | 1752 |
MD5 | 2BEF50BB844954C75A2F2B4B3D8D18A4 |
SHA-1 | 06243F1DFAA89D73C85D5C1F03BE7E9CEAC42D7E |
SHA-256 | 65749EB10AC05D95F7E532AEE46604C4E66AA6EF1E4E845207026CC799FC04CB |
SSDEEP | 48:X5p4fNr8w62H4YOHxOni4fNP4FTUhxZ3L/8vY74YXjATWJ1n:J6NI12HROHxceGhxtUv44YcY1n |
TLSH | T165310B7845E70AA5AD41B2BD955A92E18024F0F3F7663DC77E600C340EC030EA4742BE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/regression_least_squares_modular.py |
FileSize | 1069 |
MD5 | 4BD0BB3127FE9768BDA2C813A20A4EC0 |
SHA-1 | 06780EDDFB822E21FC65C8D2A051233EDD7160CE |
SHA-256 | 8E0B32B0CAFD7084856A822E49F4826B2D685E36A1A88718B8E6325E9C58B509 |
SSDEEP | 24:I01KacJaJyQrpK8fb2KS2CriXK2aBzG93O9n:do3E0C4iXr3O9n |
TLSH | T183117D0B5B26A020CFF6E52E24A5299507F6DD4B2F874409DB8C2B1403DB3DAF4D1189 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/shogun/__init__.py |
FileSize | 242 |
MD5 | 34E9B6980AB242BE93EFE874B10E5ED1 |
SHA-1 | 06F6600BA581F182813519535E23A2D1757CE6A0 |
SHA-256 | 8847B1B3CCD4CBAE012A9F2C84AD79EFA68AEC665E6084CA24AED29830926C82 |
SSDEEP | 6:UYXJfAhc4NfQqvf/pHt1M6FYZfm+hHWtNjHWxg:UWJoh5fQaJHtG6+4G2D7 |
TLSH | T1FAD0A71823184D5FD9F7D361306119661D3C0ED75F546A7AC464846D0A6E870A2A3E5D |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/graphical/smem_2d_gmm.py |
FileSize | 3771 |
MD5 | 08E9F489F87ABCC0F3038473B5D4EDE5 |
SHA-1 | 07826896DD48BD38E0E1B180552452F1CD02FC2E |
SHA-256 | 70DF3C1B8C5AB3C2E9B34B135F7B497111683DE492BD6BB9F976B00A38A8DB06 |
SSDEEP | 48:NRmUP4ryedAOt7vNq4JZgIa813QOmlibd/rd/VnpNBguw9Dsk5Aq:5ELt7vNwIxQOFblrlVnpNBguw9Dsk51 |
TLSH | T1C371D321A9A5CFB703D0CCE9A8D4009707399176BA10CCAD21AF5E7747E387CA5AD771 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/distance_canberraword_modular.py |
FileSize | 1488 |
MD5 | 35D253651C170C81C118BF2862D55AF9 |
SHA-1 | 08306F8356534EC32C992A03A3B7E3FA0633BF9F |
SHA-256 | 3FF8457197D20E42C40470A8507F1EDA1EC82D0F40B915B6F576ACF642993300 |
SSDEEP | 24:qhrHnm0t4p2gG/b2Y+hv2qEq/CPLZ6YPWEqmKk/CPtZA6gTTC9TbN9on:MHm0HdMt4FVPjuk4PsnC9/N+n |
TLSH | T1DF318D9AF7BA1D06C0A4316DA1A63D933DE344CA5930A17C872C849045CBCC7629A30E |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-shogun/examples/python_modular/distance_normsquared_modular.py |
FileSize | 837 |
MD5 | 1251150165A33A2C167F21E19754499A |
SHA-1 | 08EA510575F580611AAF80DDE893984B3330DAC1 |
SHA-256 | 46896C26DD1003825E5C49BB03C8251DD3FFB8ACBE067944D04A089377C66CD8 |
SSDEEP | 12:RqvSHJiT1PtPhfD8G/s26n2quLDmHON1iAGl1SHOwh8AiH9l1a4GEBs924wUfIn:ReYiD8As2rLD3ntGTyOw7C9TbNBFn |
TLSH | T17F016F67A7362028C4F030D9A1903F5369E7D06EDA28753757AC43D0118F9D2E1ED28C |