Result for 450CC1C230BE5C0296BBF142B60D18743A833D99

Query result

Key Value
FileName./usr/include/dart/gui/osg/osg.hpp
FileSize717
MD5EC2D54A3B5F890FD8E1B4465D9A07886
SHA-1450CC1C230BE5C0296BBF142B60D18743A833D99
SHA-2569AF12189C6434571297237AE22283CC8421BB30F2094FFCBC3646C4311C4C002
SSDEEP12:jlimrLlA4jrA4EA4c9A45A4T5A4bA49/HZA4BrrA4TCX6A4cA4NzDA4dm5A4JZAy:pvVvk89Zd7dBhXzCK8hkTLYK2G
TLSHT130014464C86C03D7D0F287E57886DD480D5B7AC5B2282AEF20E333D4F20C899A08F729
hashlookup:parent-total89
hashlookup:trust100

Network graph view

Parents (Total: 89)

The searched file hash is included in 89 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize45092
MD5C20054CB1A15F99004957953F8C2AFD1
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-1000087DD817EF998B5B5FEA447B61C3624B79BE1
SHA-2564D74B21B19871719CF6B6E52C1DC66FA3C0A927BF98165CA985EC5C897F590AC
Key Value
FileSize41856
MD5A0FE3169FB1F5431DAE26EA26933E912
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-1036A6651A18CC77A5EB7B866DBBD690B1042BC2F
SHA-256246CE78660140554E6FC3DE7D719FC4AC5C4B72D8EB1FD887648A1540331AF8E
Key Value
FileSize45088
MD513D8628F4820C9ED77A1154C6980FAE0
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-10435F19CCE64A83D20B0C5B234D2E5A7D8B20175
SHA-2562C31468C3F8622C7D530815B10668FD4755D6124EC5581E6A29FB18E419E2E31
Key Value
FileSize41568
MD5A6EC8154647AB14C3023D44AFA793693
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-105AD8420C9EA687535FABCAAC33794808F46FE91
SHA-2569ADE2B3F89D594CF2E26B574F0BB5C424A9D56F6CE457501B7777C817F144C8C
Key Value
FileSize41904
MD58929F18BDB06516534091473F3A94CF4
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-1069CC4A6A26A5B1CF3CDCF54A4829CA793596FB0
SHA-256CD6B6F57640FBA5DC056616C435622FAD136432D326D64B2D17FE5FFBD05E6C2
Key Value
FileSize41640
MD5A8EAF5B559A81E38BBCA9E6A75C4ACC7
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-108FC343553EE46B4DC2CD4C49A4FFF868CFCE42F
SHA-256E28B8E48F31619188090B649CF1A2BCD5043F890010E87E5BD06AAFD8D0D7C13
Key Value
FileSize41896
MD5C63AD13E46B0CF9B89076068FD2D64F9
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-109DA41EF8D5C630B367C4DEBCF37C0857D574E08
SHA-2560C047CFB8902B68BC6CBE071D92815A5479F376DD4EBA6BD0274D75FF3FFCF6B
Key Value
FileSize41904
MD541B6D022E66456AB6933DD0E42A3F898
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-109EA7E9FA6854D878A08F1C2D826E3D8E4788620
SHA-2567D3578FF64F894452E6E6ADAED5BD667466D41416E57593751EB117B4886FB8D
Key Value
FileSize45196
MD589415EA2A4520A7E5569175C5186ED1E
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-116ABE24240614E25818D5D9865C0E3241F6B9510
SHA-2562197B8D7E730BFC743033ED2022CD8C8BB64166C247C7ADD8E6F52E555093B8A
Key Value
FileSize45112
MD53C54E67C88575B8BEE18761D3139699A
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-11A7B3A63941ABC0770C78B44E0E964C7F861BA1B
SHA-2569FBDFD2C9EBF433563239D336D8C6C0FEF27F53A1C30F8A6909682CE15C6DFC3