Result for 4501C8ECE35BF6D5E567C350EEC71B25C38FCA61

Query result

Key Value
FileName./usr/share/dart/cmake/dart_gui-osgTargets-none.cmake
FileSize888
MD5736F663C1B9518D96CA2579AD0F906F1
SHA-14501C8ECE35BF6D5E567C350EEC71B25C38FCA61
SHA-25680616B9B32130D7A4014B7AF04ADD0F680E1196FC0D59535AB4B25F7A813D77A
SSDEEP24:x3m7hK0qUMYAqm/PHiI4PM6jrLrq+MNEPOqPDjrtjUu:F4gUMt63Hz9Uu
TLSHT118116D530EC94EF73393ED5214D11114E57485E7078B7DD9A6A7371A32A0D55060F4CE
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize45088
MD513D8628F4820C9ED77A1154C6980FAE0
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b1
SHA-10435F19CCE64A83D20B0C5B234D2E5A7D8B20175
SHA-2562C31468C3F8622C7D530815B10668FD4755D6124EC5581E6A29FB18E419E2E31
Key Value
FileSize45172
MD5081AE10B77D8A476F3ADDA16F3E7EEB4
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b1
SHA-13B806188AEF140B4DE724E479D9583E57812B3E5
SHA-25663560C71F6AD1CC563C0BEA8AF298A76CFFE8CF6CE0CDA6A5E211E955EE320B4
Key Value
FileSize45180
MD57C01220DE83CC14DBD1F4E67C9FD0A4E
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. . This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-12+b2
SHA-1DF9C528E2EEBD5F2308728ED1AF9A3C0B441D0E8
SHA-25608FE3A2BA7356AC1F52E9FD6B4A0A4571C3B076251FA4E3C856E7A9CE6516C4E
Key Value
FileSize45112
MD53C54E67C88575B8BEE18761D3139699A
PackageDescriptionKinematics Dynamics and Optimization Library - gui-osg dev files DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains GUI OpenSceneGraph headers and other useful tools for GUI OpenSceneGraph development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-gui-osg-dev
PackageSectionlibdevel
PackageVersion6.12.1+dfsg4-11+b3
SHA-11A7B3A63941ABC0770C78B44E0E964C7F861BA1B
SHA-2569FBDFD2C9EBF433563239D336D8C6C0FEF27F53A1C30F8A6909682CE15C6DFC3