Result for 41F1EFCCE613014CFDB67D71CA05E4F81B401F68

Query result

Key Value
FileName./usr/bin/quiva2DB
FileSize50608
MD5C96C27CAF10FDB994D59821438BE067C
SHA-141F1EFCCE613014CFDB67D71CA05E4F81B401F68
SHA-256AC227131BA4B9FE17D4226E05869B88D95E5A7E4F91021DD0AB3608F45B92A8C
SSDEEP1536:bhSxrQrS6RvtdA9Xukt0DJa2WiIxCWz/:FWMrS6RvbIXukt4Ja2W/xV
TLSHT168338EC9F683405FCFDB41F90A039A51E6608A9EFBA3CB16888271B9745D73C6E34E51
hashlookup:parent-total1
hashlookup:trust55

Network graph view

Parents (Total: 1)

The searched file hash is included in 1 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize146520
MD5D291A5289DEC47A23C3B8CF5CD66F80D
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20180908.0bd5e07-1
SHA-1BC20E6F99184D7FB875595C18790FCE9FF8DC900
SHA-2564FCA471BFE1AAF9663196251B87B9DE497844E84F8F1C9A5A2A7845579294B3A