Result for 41D71629D267C8BC4F5810285AB0859B9EF74B6A

Query result

Key Value
FileName./usr/share/doc/libdart-external-odelcpsolver6.12/changelog.Debian.gz
FileSize2127
MD5CD5B6322F6E7E1CCF29BAD11096DDA82
SHA-141D71629D267C8BC4F5810285AB0859B9EF74B6A
SHA-2560F942058E2D6228F7F2156044DD03B6919C3272D575487DA56601AC86F5B7176
SSDEEP48:Xj1McRaOj2bWAZQchVW4DbYPefsI8WFI4IAXMk64p02:z1Msa22bWUQchVbLUWFyI7
TLSHT1EB411953B81E7D0CA6CD75F70B078B2F82A6083586798653650AA1F11707943B49CE79
hashlookup:parent-total11
hashlookup:trust100

Network graph view

Parents (Total: 11)

The searched file hash is included in 11 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize42128
MD536AFB12B17E7B31498914DC97AC829E7
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-1D9A00C751D6FC5B0D00C50327F492C2E99BF0C69
SHA-256C1DF7607D01A32EA9F8FB34C2016F0DB6CC427300FC4957338FD147A6FD4C422
Key Value
FileSize41380
MD54643EC1B6BC3FEC3CFC821EEED9A92A1
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-12AB767C2820926E99C36C5F6F9442BB7D8023B6A
SHA-256139808E6DB7996BD14940A4BD1B69145F023F76B2BACEB6C92445263E9D1069A
Key Value
FileSize40292
MD52D497E61580B64C1B518B3F2ED21547C
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-119A35A8DBB973D2BD0A8787F4EF2182D93E41543
SHA-256FA8D2E193B5382FDDE60261D974F0681DCC36D5379398F1EF762F1E55225FC81
Key Value
FileSize42044
MD5E26B3C167FA2AB3C15019CD4312216ED
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-19D968BC4F5F92F87386EC8096D61BEE69E55BC7D
SHA-256C0E486A1E97AD811BB9F2A7A9D99E010BFEBD6D59E231ED06DAAAE6843C3A5DE
Key Value
FileSize39084
MD5CDC7701D318D5CF253FD12340C9D7826
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-1C84292D563AE35914BCE903CBE4578A90528BA46
SHA-2563AF8A6B41B0F9B814EE16ED1AEFF1F46A6082E7C037724079D92B5B035DD8800
Key Value
FileSize39092
MD5BBAE5CDC1FE37120C949A20CAF69DCF1
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-1B65C9CEBABA0FE28A43152A08E212F511BCA9059
SHA-2565587E3C56663AAB564CBDB7D0CEC27B221BEA0F3D5B054C25DACECEC1156D41B
Key Value
FileSize42044
MD5D31DFE181936743FA28DF837C85104A8
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-1CADF460E829280E1BE725A4D2F2796EA87B04BD3
SHA-256AA636A1CA293FEA145D787C79788EFB309A58819EA459FA5CA77A02CFFA905DC
Key Value
FileSize41380
MD5AFD6294804AB54DB9FDB0110DF5E248F
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b2
SHA-186FAD40D0074FEC45685C08FB5840CC38BE04B93
SHA-2567A4358534C1ACEA915C19787274A19D2FACA63A08635C0DFD4EA7D2F2596F607
Key Value
FileSize40312
MD53A8D84B09F392FE586E20B6E2C223167
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b3
SHA-163245D51FEAC7FBE3231AD22DD77191599DCC4F6
SHA-25632B7AF81D6ED353446EC4BAA728B19D24C70649F47A9247DAB165DE9E8568192
Key Value
FileSize42100
MD518BC6B5867B3472533095D8B16BFDC46
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-19672AABC84A44CAFD0CF3C7F9982BC806C217B27
SHA-256E5CD9E45A71D2B4581BE2D616209BC2613BC6E8DA2FEE2BE4CFC41E4095C504F
Key Value
FileSize41380
MD5019E52E9B34F2278321EBDBBCE52F8D7
PackageDescriptionKinematics Dynamics and Optimization Library - odelcpsolver lib DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains the odelcpsolver library.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-external-odelcpsolver6.12
PackageSectionlibs
PackageVersion6.12.1+dfsg4-11+b1
SHA-197AF5E5E3200492F541187FA9A3DCC3133568C56
SHA-256C7DF143F1F2003DCE53EF9565520991A87B516FB77FE7C6855F1359BD9BE39DF