Result for 3F9D6E6FFCDBA16D002EE797DD609924E0E3EB90

Query result

Key Value
FileName./usr/share/doc/python3-pycuda/changelog.Debian.amd64.gz
FileSize208
MD5521133106CD35FA7E3BBFB195EA3BC39
SHA-13F9D6E6FFCDBA16D002EE797DD609924E0E3EB90
SHA-256C247EDD46470D986737C31556A04674838253B515A0D7696337C10ECED801277
SSDEEP6:XtiWkzWv0yjKQIMbu96rCaQudYseW5qPBtR:XYW4WvDjK3TuBILPd
TLSHT146D0228049CDF782DC2D473B0702C95A274C1F8FE2752A827C760508AA3A236067D6BE
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize304772
MD5D605FE9FBDC7B50A73D18FBC4FF81EFE
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2017.1.1-1+b1
SHA-1CF5773E8B7780D41258CA446848E8188A7741D75
SHA-256880DA4E20469C523AAFE48C8EAE59F600750495381E9961600E2CE11D59716F9
Key Value
FileSize5080956
MD553899F54CCFDC1CD7CB6F209065532B6
PackageDescriptionPython 3 module to access Nvidia‘s CUDA API (debug extensions) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains debug extensions for the Python 3 debug interpreter.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython3-pycuda-dbg
PackageSectioncontrib/debug
PackageVersion2017.1.1-1+b1
SHA-1FEA67DAB76DEE4DA622A883497E51238D59D65B5
SHA-2565233ACF76F7582E35BE8281EB106910372CBDAA1E5CF324D4DD463C6044439D7
Key Value
FileSize5048656
MD596B1AEAF23F29DB8A29BD17C8D7FF4DF
PackageDescriptionPython module to access Nvidia‘s CUDA API (debug extensions) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains debug extensions build for the Python debug interpreter.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython-pycuda-dbg
PackageSectioncontrib/debug
PackageVersion2017.1.1-1+b1
SHA-1CBC0E13285FB61FF8F63C1B509E6CBCCECF6D9D4
SHA-256DB8C00E71F5B52FDD05F82FD7879A7B1FCF4DB3DFE1D88F2CCC6BE4B57B7CA12
Key Value
FileSize305108
MD590EF2468DFBB2F12EA92F28C818C249F
PackageDescriptionPython module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython-pycuda
PackageSectioncontrib/python
PackageVersion2017.1.1-1+b1
SHA-1D1C5EF7E6BE2DF1137021D5B094F743F9D2610C7
SHA-256405B8677A1E57615140991C45A66E131D865E1E57B479CB12B3D6F970E7DF391