Result for 396B06D914C0A1FE02790934424618694AA5DB70

Query result

Key Value
FileName./usr/lib/python3/dist-packages/pyspectral/atm_correction_ir.py
FileSize5200
MD5A1DBD682628B48E0790841F282A11F8D
SHA-1396B06D914C0A1FE02790934424618694AA5DB70
SHA-256CB31101593C5F4AD1079BF0B1006BDA2A45DA4C7F12E34D230B2B0A4BEB96E8A
SSDEEP96:XdzfsiMsV9YFM/dfgMdDZnlMBEqr9j3LMqcHRfMdjxmsUMk2MX2UxMV/iH6WJO:Zf9MsVCM1fgMdZnlMB79jb0MHm7Mk2MM
TLSHT16EB1D81BF7044134A1126DB7A58BA386E72DBD27160856283C6CD6056F27CB6C3B73D9
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize191112
MD577CB94E47E2630EF5F66981CC1AEFDA8
PackageDescriptionReading and manipulaing satellite sensor spectral responses Reading and manipulaing satellite sensor spectral responses and the solar spectrum, to perform various corrections to VIS and NIR band data. . Given a passive sensor on a meteorological satellite PySpectral provides the relative spectral response (rsr) function(s) and offer some basic operations like convolution with the solar spectrum to derive the in band solar flux, for instance. . The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI, OLCI and SEVIRI. But more sensors are included and if others are needed they can be easily added. With PySpectral it is possible to derive the reflective and emissive parts of the signal observed in any NIR band around 3-4 microns where both passive terrestrial emission and solar backscatter mix the information received by the satellite. Furthermore PySpectral allows correcting true color imagery for the background (climatological) atmospheric signal due to Rayleigh scattering of molecules, absorption by atmospheric gases and aerosols, and Mie scattering of aerosols.
PackageMaintainerDebian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
PackageNamepython3-pyspectral
PackageSectionpython
PackageVersion0.10.4+ds-1
SHA-1DE099204FB9DEC401194A1C579478F0D44864F53
SHA-2569AA2CD4A52C0F7C87B270BA2E0B42DDC2F1E9D0E47DE2860EF578E9F7B73072C
Key Value
FileSize188328
MD51E6C02EDC007B0EDF0C30E05C4AD4FC9
PackageDescriptionReading and manipulaing satellite sensor spectral responses Reading and manipulaing satellite sensor spectral responses and the solar spectrum, to perform various corrections to VIS and NIR band data. . Given a passive sensor on a meteorological satellite PySpectral provides the relative spectral response (rsr) function(s) and offer some basic operations like convolution with the solar spectrum to derive the in band solar flux, for instance. . The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI, OLCI and SEVIRI. But more sensors are included and if others are needed they can be easily added. With PySpectral it is possible to derive the reflective and emissive parts of the signal observed in any NIR band around 3-4 microns where both passive terrestrial emission and solar backscatter mix the information received by the satellite. Furthermore PySpectral allows correcting true color imagery for the background (climatological) atmospheric signal due to Rayleigh scattering of molecules, absorption by atmospheric gases and aerosols, and Mie scattering of aerosols.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pyspectral
PackageSectionpython
PackageVersion0.10.4+ds-1
SHA-14F17C5DD51EFDDCE7750D01D3442B066B7CCC448
SHA-256F7123A82BEC388C49E7C0A6F7681F1D1ABB885E9D0753E067F146616D6AAAD43