Result for 381DAA7D8825921A3C0CB1AFB4E483541978A9F9

Query result

Key Value
FileName./usr/share/doc/libint1/changelog.Debian.gz
FileSize1591
MD5D6CF6F103E7250AD452C27AAC7650B0A
SHA-1381DAA7D8825921A3C0CB1AFB4E483541978A9F9
SHA-2565C450B54C743DBC9688D297B5AFDD38A6842F52E7A829207486C834655E610D8
SSDEEP48:Xl8MuMr1bwyrUcT7qBqj3VAdIkam8SQ6T3kT8Za:18MuO1E8UcTOBqj3+In96T37w
TLSHT140310AD2D5044B32879F9B3F6A4D9DB9618221FB286A552017412FC5A04B52114A80F6
hashlookup:parent-total18
hashlookup:trust100

Network graph view

Parents (Total: 18)

The searched file hash is included in 18 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize7841712
MD5173EA09A904876A880DA6DDFF704B461
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-11B0EB8520F01A15DAA770B430C5727633045CC94
SHA-256E87CE710302414980BD815DA54B199A14D133FA499BB6C3284E5F9FE45B5056A
Key Value
FileSize7512396
MD53432DA0B2038E3143F8745202E4C5595
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-6
SHA-11F3658D77119B2589C8673E0734493A56E2A2CF9
SHA-2567C9A76B945E878ABAFB25E0BBE9227ADD2AA8E1A88C545AB9105FE8B18ADC441
Key Value
FileSize8230116
MD5E745BE4948E5B72C0099F6D2F292B2DF
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-12A8B30A4A32691B8CC85F10206D0D641DE91AF65
SHA-2567B7924F24DC5CCEF5D6BE5CBF1E3916A32D1E4C9644BA3C8C756F6554B8B3EE3
Key Value
FileSize9828016
MD5540BB1BB0929252982177DB5E723CF36
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-14A61DF9427A59F3B2E34061450125248BB32BDAC
SHA-256E7EDFF000F7FE3B81F06ACFB98633264447B98534430ED9C3218C9B3F14CDB4C
Key Value
FileSize7354036
MD5E7FB002B98DB3FC353A3138AEBCFE753
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-6
SHA-171540F3CBB60C7850E374182320648509D2670EB
SHA-256EFB72C8277A1F5CA65017C45082448D109798DD761D403DD29CC6B01FD594D82
Key Value
FileSize7774320
MD5FD999FE31A992CE14F979693B506F15A
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-1765D45C20F10CB513A7B26B4F13A11C1432632C9
SHA-2562468608E0655EA7EE7503CC38593B6D31D8D519E3FE980B0A738A8FF696B0029
Key Value
FileSize8683460
MD5CEB6C83CFCCD449E5C8F574F7310594F
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-18559800F87F76D11C0C2DA95EC0AE7350B6A962C
SHA-256AD17447EFADD361180B6806913FAA3C47FF4B2C19124B44302FD528CD79794B8
Key Value
FileSize6288856
MD558C8D7227E4977A16149247B52873889
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-191892C0DC775DA19A33B507A076299FDA602BFAC
SHA-256C8B36590BAAEB7BCD1BCB1D3612C77EAC06FBE1EAC7B5171E1CD5BBE2489FCC2
Key Value
FileSize8496288
MD5C93ED761BB34529401001A4B70431CF9
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory (devel) The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the development header files.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint-dev
PackageSectionlibdevel
PackageVersion1.2.1-6
SHA-1973A58D61CA32D0CE93A284EB5EEC3808392EDB7
SHA-2567F3F4CF1A4D402CB2A122559F6FA656EB5AA3E09BD8161D9B7995172AFC26D36
Key Value
FileSize6254844
MD5AEB3D6CBEECD2ACCD564D2B52301EE7F
PackageDescriptionEvaluate the integrals in modern atomic and molecular theory The LIBINT library is used to evaluate the traditional (electron repulsion) and certain novel two-body matrix elements (integrals) over Cartesian Gaussian functions used in modern atomic and molecular theory. The idea of the library is to let computer write optimized code for computing such integrals. There are two primary advantages to this: much less human effort is required to write code for computing new integrals, and code can be optimized specifically for a particular computer architecture (e.g., vector processor). . LIBINT has been utilized to implement methods such as Hartree-Fock (HF) and Kohn-Sham density functional theory (KS DFT), second-order Moeller-Plesset perturbation theory (MP2), coupled cluster singles and doubles (CCSD) method, as well as explicitly correlated R12 methods. . This package contains the shared library.
PackageMaintainerDebichem Team <debichem-devel@lists.alioth.debian.org>
PackageNamelibint1
PackageSectionlibs
PackageVersion1.2.1-6
SHA-1984572A45BB2422289D5971EA85668F2D7CB6BB3
SHA-2562B243C65688120CCE77FC4A0316AA2B2EFD04C882EFC9BB433FF75C126751ADD