Key | Value |
---|---|
FileSize | 2103514 |
MD5 | 56C9A6C6CD7135C11CEF2BE8DB7DAD80 |
PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
PackageName | python-cvxopt |
PackageSection | python |
PackageVersion | 1.1.3-1fakesync1 |
SHA-1 | 37E8B8D890ADFDF01C2371447D0E7484A78DC7B6 |
SHA-256 | D0ABF02DF605355923EE619CA44A4DCCF032E6B6CD025A51FC3AAE0DF7B3DC77 |
hashlookup:children-total | 100 |
hashlookup:trust | 50 |
The searched file hash includes 100 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
FileSize | 445 |
MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/changelog.Debian.gz |
FileSize | 1150 |
MD5 | E50C8AC950A3204310EA81AF084ADF55 |
SHA-1 | 02731BB22AF3590A62688B3C771F9F2D16A8B29F |
SHA-256 | 0CCCC8AA8788AE12FE737227BB4E60218CEA1A8477BAAF3431D7B52AA287880B |
SSDEEP | 24:Xmj0NWQFGgbPQoox4vyAVRKPM3TZoMJ9Q5WS0iNuOBTLxZ9E3FQQvHWuf:X245FGgbPQooxiRRnloMJ9Q702ZZeVQk |
TLSH | T12E21D75F9832C8C859CD7D30F1A63037FB2C7631F9B3254288A46811A710AABD139A1C |
Key | Value |
---|---|
FileName | ./usr/lib/python2.6/dist-packages/cvxopt/dsdp.so |
FileSize | 21488 |
MD5 | 93CFD1693F08CDEB9198C61C7D29EF05 |
SHA-1 | 04916C082C9B33DA141847F1991195CCE57742EE |
SHA-256 | C81AAFCDA5BDFC5E45B89F8D9D5878AD8FE7ED74A0E64DD5957334186225139D |
SSDEEP | 384:mQ953hbNWzZvy4HOk6/qNJq0ox1iAsOOXeB:DP3hh6ZvetiNA9PihOO |
TLSH | T1C7A2E60BA39087B2C18447F44C979522AF70B449D734A21B374CF2343F62B959B7E7A6 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.6/dist-packages/cvxopt/gsl.so |
FileSize | 11632 |
MD5 | 46AAF1B2FA5E2B85D8943A833B2050E3 |
SHA-1 | 0832F09EDE4F0DA1E41F7710C7A5E3DDC27AA0F3 |
SHA-256 | 27DAB9781588EEC5790AE62D62B1478928842A95E9BAE8EEAC81973A47D0AB2C |
SSDEEP | 96:R7vsctGu+j1fDEYJsmiCKeTPIYhsqRlehpoP0SPp+6TcIi7sSu8W5O:R7U2/+j1bEYWDaARSep7 |
TLSH | T11632B40FB185523AC5A8C334889B8630B670B08465A2977336BC95AC7F43B355F3F69A |
Key | Value |
---|---|
FileName | ./usr/share/pyshared/cvxopt/msk.py |
FileSize | 30303 |
MD5 | BE75B79CF584BCE72E192EBA9F18795C |
SHA-1 | 0973A4BF52618DFC6A43690840B0A405B77DFE6A |
SHA-256 | A79578F461864CEDF023EEB5E62E086A6FF384DBC9F33772396BEC757B9A5A95 |
SSDEEP | 384:K7R5stI/7kyl/sdF48C/eQsweUAq/MlXiI/l0kwCkHI/yr:Uvstkgyl/sdF48ODsweiaXik6kXkHkW |
TLSH | T11CD2830558400D3AA2A3817D8CD7CC097F6195633D8B2D7A386C91B86F1B737D7B87AA |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/regsel.py |
FileSize | 3149 |
MD5 | 437919296D51AC8F69D12500C0807F42 |
SHA-1 | 097BB7690701B72F1ABB505DCC1016A792BE9EC9 |
SHA-256 | 24429B539050989ACBB789680C3E5E10574C938435FDFAB373A23F7C0BA58B01 |
SSDEEP | 96:S3HRpoF7BL4lCI1wz9WAdB+73DXLv18byir:G7lCvRK3Db98bye |
TLSH | T142516544F4423C76865BD1A9E4D134204F2AD4272D1F289AFFAE3E888F478F54674389 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/consumerpref.py |
FileSize | 3991 |
MD5 | 5CCD74DD7D1E5423D4C8C18F3FEFCC2F |
SHA-1 | 0FB481D08091F23B0622C13CC9F8ABFB75FF9BC3 |
SHA-256 | 806DD9B8F6944C06A04A87D8FB2F986747E900D0136FFCFB5F40CA007D98891B |
SSDEEP | 96:AJOmZEEFIXIZJj0SRQwC5Aw212g0SRojzhze:AImWCIXIZJj0S+wCCXgg0SiVe |
TLSH | T15D81EC03127AE9344A07D7FEE5913310A92DD8EB6D1A3886306E0E875F175ED6232D5F |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap9/floorplan.py.gz |
FileSize | 1507 |
MD5 | 3D46A3E0091B6C5456B860784E4ED58B |
SHA-1 | 10B5C849601281E41F0E47BEA7D21D09AAE4391A |
SHA-256 | B3D430325563926C6520EFC4BB2EF20814B6811390A6A6D86832690D27874061 |
SSDEEP | 24:Xby2zMH0eOxdTGRnLyIkbUNICSbQ8bd9iwZgbd0a5YmStsd/8y7BPL7wvBT7:XbrwitG1vNuQ0iw0+a5HSQ/z7Za7 |
TLSH | T1FC310A927C3839084128FE4A0E861EEF602EC01F68A120A1347E301B9F096C780E53E9 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.7/dist-packages/cvxopt/lapack.so |
FileSize | 241456 |
MD5 | FE235AB56B40E34CB92919CC37C520DD |
SHA-1 | 14683C373C2EDE42B867F5E3642500EEE5C02EB0 |
SHA-256 | AAAB31424109AA56C035FC3EF4AE0F371AD8589A470724125BDF57448AFCE676 |
SSDEEP | 1536:ozk+ZrbQQarfu0YPF34c7qZ9SI0257SFSPY5Y3U5LD4vyi1qafwpwP29XwN4U3aV:ozkWbWm1gGFNUvyFLSqs9PeYFDiNpB |
TLSH | T18134D732FA5301F4C415C8754A6B44E36BB0794E82357A757B8C9B752FA1F20A32FB64 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap8/conelp.py |
FileSize | 815 |
MD5 | EA54E397E3093B100C5BBF14C3A4E06D |
SHA-1 | 14BC88EA42FD67A8DCA767FADCAAC178D8332816 |
SHA-256 | 949E33AE7959C59A90D10159DA32363FDD36BB226DE58E1F3A4569FB46433DA2 |
SSDEEP | 12:UIFEa7NQBQMLt1YcTYeul+RHbq4Gn+1G2rAoDo29gzKaneSnYtfszECro:UI57NEnZful+xua/A8mKank2vc |
TLSH | T1AC01D49F91873CF4432E8B74A0471D1467B6C83979D73188387E8E2DAB3DB8496ACE54 |