Result for 36ED41BD72C813C182EC409FE08B7E3F78AEC84F

Query result

Key Value
FileName./usr/lib64/R/library/acepack/DESCRIPTION
FileSize1541
MD5747D409F27A69A028E6CCAD57A26D753
SHA-136ED41BD72C813C182EC409FE08B7E3F78AEC84F
SHA-25681EB4F354903D775254F78B1B9CC8815EC7EBA24701BBEF6E629F63D311955A7
SSDEEP48:ynTtrNxnOoTZu3gJy1XbsrhiA/SXBLyQRvFY:ynTlHnOoT4QJyRsrhiSsLyoFY
TLSHT197316446FB211620814352276EFA12491B38827DB262E6B87A15A17E521282E47F77DB
hashlookup:parent-total1
hashlookup:trust55

Network graph view

Parents (Total: 1)

The searched file hash is included in 1 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5A035A4078E114E4EB103F34DCE9CC60E
PackageArchx86_64
PackageDescriptionTwo nonparametric methods for multiple regression transform selection are provided. The first, Alternative Conditional Expectations (ACE), is an algorithm to find the fixed point of maximal correlation, i.e. it finds a set of transformed response variables that maximizes R^2 using smoothing functions [see Breiman, L., and J.H. Friedman. 1985. "Estimating Optimal Transformations for Multiple Regression and Correlation". Journal of the American Statistical Association. 80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is the Additivity Variance Stabilization (AVAS) method which works better than ACE when correlation is low [see Tibshirani, R.. 1986. "Estimating Transformations for Regression via Additivity and Variance Stabilization". Journal of the American Statistical Association. 83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction to these two methods is in chapter 16 of Frank Harrel's "Regression Modeling Strategies" in the Springer Series in Statistics.
PackageNameR-acepack
PackageReleaselp153.2.3
PackageVersion1.4.1
SHA-134FA4AF00FF91F8C239900905456425A3CEA9D60
SHA-256D1BA9AAE3FBAC4591D3EDF7B0C9913AA5BEB1AB5B5D49F98A9384F54B64B5490