Result for 36C10297CCD2A443637F0FEDD9DAD82427D4A7EE

Query result

Key Value
FileName./usr/share/doc/libghc-enumerator-prof/changelog.Debian.mipsel.gz
FileSize262
MD54C967E5C64BF6175B23D38903EC4101A
SHA-136C10297CCD2A443637F0FEDD9DAD82427D4A7EE
SHA-256AE4DC7F5793A10546725BCFCE9DB44E984234F28CA6C1DA272366D55788AEC3A
SSDEEP6:Xt0R9jnbx4QYi/WuMDvutjfPrn8gBBTBQs/F7MKctY06:X6fXYi/Wu6G7PrLQuw6
TLSHT16ED097908475431BEAA9093D84B2038BF929B8D7C38C32070F024E8830A5E18012B7AA
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize267196
MD56444C9B14784CB3349B4D8D5824E5E26
PackageDescriptionhigh-performance left-fold enumerators Typical buffer–based incremental I/O is based around a single loop, which reads data from some source (such as a socket or file), transforms it, and generates one or more outputs (such as a line count, HTTP responses, or modified file). Although efficient and safe, these loops are all single–purpose; it is difficult or impossible to compose buffer–based processing loops. . Haskell's concept of "lazy I/O" allows pure code to operate on data from an external source. However, lazy I/O has several shortcomings. Most notably, resources such as memory and file handles can be retained for arbitrarily long periods of time, causing unpredictable performance and error conditions. . Enumerators are an efficient, predictable, and safe alternative to lazy I/O. Discovered by Oleg Kiselyov, they allow large datasets to be processed in near–constant space by pure code. Although somewhat more complex to write, using enumerators instead of lazy I/O produces more correct programs. . This library contains an enumerator implementation for Haskell, designed to be both simple and efficient. Three core types are defined, along with numerous helper functions: . Iteratee: Data sinks, analogous to left folds. Iteratees consume a sequence of input values, and generate a single output value. Many iteratees are designed to perform side effects (such as printing to stdout), so they can also be used as monad transformers. . Enumerator: Data sources, which generate input sequences. Typical enumerators read from a file handle, socket, random number generator, or other external stream. To operate, enumerators are passed an iteratee, and provide that iteratee with input until either the iteratee has completed its computation, or EOF. . Enumeratee: Data transformers, which operate as both enumerators and iteratees. Enumeratees read from an outer enumerator, and provide the transformed data to an inner iteratee. . This package provides a library for the Haskell programming language. See http://www.haskell.org/ for more information on Haskell.
PackageMaintainerDebian Haskell Group <pkg-haskell-maintainers@lists.alioth.debian.org>
PackageNamelibghc-enumerator-dev
PackageSectionhaskell
PackageVersion0.4.20-6+b1
SHA-1DADF895DF9431FE2BA3336F4A1A9DCA55A8255B4
SHA-25629263D770DE53A6006727ADE72F13AB71F8783C9E00C03E93B4CDC3FC8B4490F
Key Value
FileSize275392
MD5E780A11476A75DE046F4C2E40FA9807E
PackageDescriptionhigh-performance left-fold enumerators; profiling libraries Typical buffer–based incremental I/O is based around a single loop, which reads data from some source (such as a socket or file), transforms it, and generates one or more outputs (such as a line count, HTTP responses, or modified file). Although efficient and safe, these loops are all single–purpose; it is difficult or impossible to compose buffer–based processing loops. . Haskell's concept of "lazy I/O" allows pure code to operate on data from an external source. However, lazy I/O has several shortcomings. Most notably, resources such as memory and file handles can be retained for arbitrarily long periods of time, causing unpredictable performance and error conditions. . Enumerators are an efficient, predictable, and safe alternative to lazy I/O. Discovered by Oleg Kiselyov, they allow large datasets to be processed in near–constant space by pure code. Although somewhat more complex to write, using enumerators instead of lazy I/O produces more correct programs. . This library contains an enumerator implementation for Haskell, designed to be both simple and efficient. Three core types are defined, along with numerous helper functions: . Iteratee: Data sinks, analogous to left folds. Iteratees consume a sequence of input values, and generate a single output value. Many iteratees are designed to perform side effects (such as printing to stdout), so they can also be used as monad transformers. . Enumerator: Data sources, which generate input sequences. Typical enumerators read from a file handle, socket, random number generator, or other external stream. To operate, enumerators are passed an iteratee, and provide that iteratee with input until either the iteratee has completed its computation, or EOF. . Enumeratee: Data transformers, which operate as both enumerators and iteratees. Enumeratees read from an outer enumerator, and provide the transformed data to an inner iteratee. . This package provides a library for the Haskell programming language, compiled for profiling. See http://www.haskell.org/ for more information on Haskell.
PackageMaintainerDebian Haskell Group <pkg-haskell-maintainers@lists.alioth.debian.org>
PackageNamelibghc-enumerator-prof
PackageSectionhaskell
PackageVersion0.4.20-6+b1
SHA-185776B4872D2701B6DFCE2A5248F094EBA29BBBB
SHA-25671C33F9D4AA613D8E69B53061752A5982D7DF4D7BE637FBB0963235ABD9087E2