Result for 36B0E25A9C4DD71F282B6DB621F81D7BA96AA996

Query result

Key Value
FileName./usr/bin/quiva2DB
FileSize133304
MD52C5D67558EFDEBCA387B74AED5CC371F
SHA-136B0E25A9C4DD71F282B6DB621F81D7BA96AA996
SHA-25617F1D3747C448D8BD3D0AB613869AE61BF11F14481F81B5A740D71B2E5352EBF
SSDEEP1536:HnS9AJ3lsez7m3CnhFjY5P6q4uAlocqWhULfbDWFZAZm5Cv7KDbFTI19wF:HRlsGm3CnhyL4xl6WhaSr+YCveD
TLSHT1E0D33A13310D5F88F786793747EDBD02725A3E8B0B264616B560430FAFAD32ADA1BD19
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize200316
MD511D91505B6D4714F4EF4D68BED554800
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20201103.8d98c37-1
SHA-1B1CD229D80191D3169D76FA420BA74933CA2B319
SHA-256F3F475C901E8C9A98D6BB8643A816208B69278D9C78CBEF7EAD37A30A183F74D
Key Value
FileSize200504
MD5301D42C05AED189920479B51F25C9691
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20201103.8d98c37-1+deb11u1
SHA-13CE10A3E8406E328373E55C4793B953D7C1A6E9A
SHA-25686CFE7B9DD9005FFFA53D3987C128D89BCF442FC976F0948028EBA1806F8AA6A