Key | Value |
---|---|
FileSize | 1720432 |
MD5 | 4DA162232637FC38A1ABD363F642C751 |
PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
PackageMaintainer | Ubuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com> |
PackageName | python-cvxopt |
PackageSection | python |
PackageVersion | 0.9.3-1 |
SHA-1 | 34A2A73C35EFE91BF8A87C57EE0D02568D2F7ADC |
SHA-256 | 63551F3F988EC6CFA9FA6055E6C1F89425A832108A1AC691C5799C3B66F5F204 |
hashlookup:children-total | 95 |
hashlookup:trust | 50 |
The searched file hash includes 95 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
FileSize | 445 |
MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
Key | Value |
---|---|
FileName | ./usr/share/doc-base/cvxopt |
FileSize | 890 |
MD5 | 0FB96DD2F91C37F8A9A144F3DA1A7663 |
SHA-1 | 06BE23FC1601D7892A63010AD7506380013AFD05 |
SHA-256 | 55CBE032A18BAC3E24290F5EC25C17FF85C9FB61DB889824E1BE1E9617B8BEE5 |
SSDEEP | 24:6tAyp0aJbWGfxyq8ciKKSuCYqZxpNqDEx6AYqLNm438SsqFdVlE:QKCbuq8ciKBYKzDxfYaNm4TjFdVlE |
TLSH | T17211560C916235BC551271CDD78119104F3815A9720B63854C7840B333C79E9937F3EB |
Key | Value |
---|---|
FileName | ./usr/lib/python2.4/site-packages/cvxopt/glpk.so |
FileSize | 15780 |
MD5 | 8DE312CA0468261C98DF0E934756FBED |
SHA-1 | 0CCE76C9B6065FA5E28061F83766865C99913438 |
SHA-256 | BD3FD4B4D498C7C99228CEA295775E9F9A19FDF07CDB8C8DAC3AE48129D27EC6 |
SSDEEP | 192:XgxX00XSitxQE0XILX3Qgc2EwjHt+C2N69NWsvDm1DuwejqaBNVMVIXe/fZva4O7:XgxX00iitZxggTjNK8KPeTToS4 |
TLSH | T16C62D71B9980C733D55A21B403C7A565FA21E531B257C793B00D9F6C6B70AD0EB0EB57 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.4/site-packages/cvxopt/gsl.so |
FileSize | 6976 |
MD5 | 5E11FC4A85BCB28B216B7DD4CFC50161 |
SHA-1 | 11B65A06D69E7C06C82AB2541BF7944ABEAF0D18 |
SHA-256 | B1ACF32F3FF991A3DAD062A715E8A5F7FAC75265CBF08437351CAFEB86049089 |
SSDEEP | 192:rx2Czu1REAvtX3QgcS1DdAM1/JUCptat:rwCzuMIlggzdAMTK |
TLSH | T1AFE1C763BE41C933C09211B881EB9158D630D1006EB7C653725EAA5C3F67863BA35BAA |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/roblp |
FileSize | 507 |
MD5 | 8E97815A4E277B3CD1E8D952AE976FC2 |
SHA-1 | 13924DCE887C4C503A497F2B2471D4B664A18D0B |
SHA-256 | 7AA7BB6CECAC6D5E26EB1A85141E4ED74C6ABD98C29B54BE28D460862EE5F09D |
SSDEEP | 12:He9v7DWn7HBtu5nld7lyl/lZPGGg2IFaZ6N2F+BNSWEg:+N7u7SZ/7lM3g6ZQ5bAg |
TLSH | T1D5F00E0D7400BCB09ABAD8D08CCC1A103672228B0A713D03345C47CACBB86707EB3F86 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/lp |
FileSize | 1115 |
MD5 | D616F95108828979A9C44CE61EAE879A |
SHA-1 | 16ED4BF0622E105A1B1781B066FA35C9EF9FE0F2 |
SHA-256 | D6C66D7E487AD150B8F0CB16C62C9DCACD3D62D1693673D73780F16D3883C9E1 |
SSDEEP | 24:+dI17kF7SqKtpy9L0dGACrYuUw9vu0Trfk:+KyMqKtKeGLrzUw9vuJ |
TLSH | T1B3216B0EBDCB70248D7984CED4ED06552AA2426C29F33EA3A61DDFB29091A55403BB59 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/tv.gz |
FileSize | 2437 |
MD5 | F7475C1946A0D74AC412CDBBB943605E |
SHA-1 | 18051E725550642CCA5F542C99011F6DB173AAAC |
SHA-256 | 964D4EE828CB12C957BFF51EA7D8041B53BBAF959372B4E3BCDEC27CFACBB499 |
SSDEEP | 48:X2i6c9cavq2ASqzdcQKka5LMSRCTba2+oJvASdERK02zZrXD1Gul:ptVBAbSQKka5bo31Z9Ec02zph1l |
TLSH | T1A8414C1648EA6002991C08FDC059ED15950909DEF7264B19290193B976720EFB33353F |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/normappr |
FileSize | 685 |
MD5 | E749E8DF21478A2B5B7AF27C62AD7A19 |
SHA-1 | 185809A572BBFE878F7C6B256785A71D1CAD4D82 |
SHA-256 | 8EDBE8ACF65DD52BE582FAA32538CA8512A76062C4B4A838D341EBD1724E8D81 |
SSDEEP | 12:HeNSnjo7DWQ7HBtuOWuNhYrkffigmxKkTDb2o6vVSRRxGH5snfwGPYsgwG/slww:+NUjo7V7SJuNOwfqgmxKyGlvI8q+AH |
TLSH | T1DE017B0CB521B9012BC7CAE9D1DC2B508F7011A2092C64A534AA2F810F6B6B87CBADD6 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap8/coneqp |
FileSize | 631 |
MD5 | C0E6F073B7B50BA296F1A3A9110EDFD4 |
SHA-1 | 1D0FB21D69B50F8DE68240FF2609E7D8587DA0FD |
SHA-256 | D5D9EE638642FC53440F9D986A3CB821AE00252200AFE9318F40ED72D65FEEA6 |
SSDEEP | 12:HYGtjXK/sOf7NQtFI7DoAVlBE9I81NaJnjkar4nkMIal3nV7:4GtjnC7NyFI7kmB+I8ijkdkMlF7 |
TLSH | T1F2F0F94FC006B868E6B4E02A89192C910F759D086D2BB400393E55A08FAE2A2CD75755 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/README |
FileSize | 313 |
MD5 | 3F1C924FE7B72BE2CCD33204BD93B239 |
SHA-1 | 24BD3D31BC460648960662B2CC36D90B9C294C62 |
SHA-256 | EE61D8B0B3FC7F748014AE8895541D7DF5E681492CCBCC0E6E7C0EDAAF90BFAE |
SSDEEP | 6:hBmHtpRz98mFjUIAFuMQdcZrXzKDFNgOgTH7FQGlJVnoQrmSovhvWWMQhkA:hB4pRz98yAIAFuMQarXmDFN2hQG/VoIE |
TLSH | T1B8E07D636BA1A32923D196D940595884F705E023B105083DC66C8444384245D97D9747 |