Key | Value |
---|---|
MD5 | 93301FD9C61C6C910A5AA1A10C9CC5EC |
PackageArch | aarch64 |
PackageDescription | Scikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts. |
PackageMaintainer | Fedora Project |
PackageName | python3-scikit-learn |
PackageRelease | 2.fc33 |
PackageVersion | 0.23.1 |
SHA-1 | 32661761E467FC947C9DD599F3E0790D6E23D783 |
SHA-256 | A202ADD1221037EED0E79AEFB1F1E3261AAAE92A596139E7C062D03F8C3CA0BB |
hashlookup:children-total | 1863 |
hashlookup:trust | 50 |
The searched file hash includes 1863 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/svm/plot_svm_margin.py |
FileSize | 2540 |
MD5 | 20F0800268AA3B127A61866BEB151FF0 |
SHA-1 | 001C2B7EF85E6BFACF735090F2C5E656263B182A |
SHA-256 | 800978E1EF0A17DAE6DEA3ECAB717245DEA9CDBA8F649D4E4A2877352DB3E680 |
SSDEEP | 48:CdEGkJVbTOXwNUh6EPXu6HSghmkhslNMftKVGbioWGF:CvQcX186HIkh6Sms |
TLSH | T140517401364C73B09B4381983DE7ADB57761A17F5D80282FB1AD6244CF18BAAD739D8A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/preprocessing/_csr_polynomial_expansion.cpython-39-aarch64-linux-gnu.so |
FileSize | 216240 |
MD5 | 8119B062F62E2387A1ADFEB474C54AF1 |
SHA-1 | 0034DE1263864CA12483662305EE46B7CB560FCF |
SHA-256 | 706985DEB5CF489AAD8793173088ED15552D24CEE00DB7810A3C189B79D7C80D |
SSDEEP | 3072:r7mJPq6hWZ61gY2ccMqYdUpO0RZozyJf5FOPi+0HXKyi+ylmsorSDgF/nk:E14Uz2ccMqfcsf5+3yi+wmsorB |
TLSH | T178247C7DFB0F7D81C5462339CF4A82627733A48CD399D5935904E29EB7D7AC68A39802 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/linear_model/tests/__pycache__/test_least_angle.cpython-39.opt-1.pyc |
FileSize | 17430 |
MD5 | 9C131CF04A76441034F7DE5F6C939125 |
SHA-1 | 0037D74A6A2B9A87614C133E1B8648EAFAC02999 |
SHA-256 | CE32D3C81AB57385EAFA4EBA173956454EB80553007D26350596A7C629E22FDE |
SSDEEP | 384:iuVildWD/WW4BU3A57/NnTt0sHRoxJUQaUAw9cdsC:iuQODNwVFTt0sxo71Aw9cdz |
TLSH | T1AE722A997C87DE5DFC2AF1FC003D09108E54E374274BE7429920A24F1D655A63EBB1AE |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/utils/__pycache__/testing.cpython-39.pyc |
FileSize | 614 |
MD5 | 9C3B26FC8A0A2F4287446BF372002823 |
SHA-1 | 00526CDBBD62FB804E4ED5EEEC3CFC0C02E90DB4 |
SHA-256 | EA6B153078F1ED1DE5AF4CC9755D371A1C7C821BE0806DCA8AFC3209488F0C01 |
SSDEEP | 12:Qj/K2ZILsS//J5l8Jm9nHA201GeEy7Vyr6hQBlk6MRcsc3gDn:QrWsY38Jm9nw1GeEyfh0a6Aqy |
TLSH | T199F0E152130F2726EFA566F822214A2546F18A335704A2472F185D4F740A3C64104B5D |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_species_distribution_modeling.py |
FileSize | 7970 |
MD5 | 46FB3C87E92A0D145492F244860459FD |
SHA-1 | 005689838EAB53866B9804164514E5CC80C8E08D |
SHA-256 | A34FA8826C4DE8FA6B695DC1AE85FA4F4EE0B4D12062B4CEF9EF213479E14DD9 |
SSDEEP | 192:ooYmsjw0Kq7Ib808OR2eo+1MWKI1SPPcTzcHF6eVIQ2:4nxh02eo+1tSPMz66eVIQ2 |
TLSH | T1DFF10A27BB453769B74380ACAF9D14C3B737891F99903468B76C80802F1D338EA3EA55 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/__pycache__/test_gradient_boosting.cpython-39.pyc |
FileSize | 18790 |
MD5 | 121E2F314CA6D2066C4133BF2F97C314 |
SHA-1 | 01860309E55D0A2BEA2102CAEE069B56E51E1F84 |
SHA-256 | BD0729F078F83C6A8D92DBAF49287198EE503E3B09EF82D788A8CD014F5F6DFE |
SSDEEP | 384:uh4DK95bZogZsP1HeOIYN8O8xmR6JI7OMLevob6Lvc7TSLGpzHOWOV:uhFRitJIEYhJIvb6LvH2HOWOV |
TLSH | T1E78229A6E4436F65FC79F5FD5C2E021C4A54E2AC9382D1B79C50A34F1CD96C82EBA038 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-sklearn-doc/examples/applications/plot_face_recognition.py |
FileSize | 5673 |
MD5 | E04463D133077965B621853B417E3976 |
SHA-1 | 01A05E69B658947C8718FF96E63992BD7120AFD8 |
SHA-256 | 95EF36678B93D317074819E512B6EB9FD41AD6CF42BE577F6C95F233494D0C95 |
SSDEEP | 96:/WrdZDdY/G+XcXjnW+eV4fcQAY8vxucweFmVFG6kgIOrzTmd1ljF9bw2sbwnHqlN:erbzeV4fcTY2IcxidksKR93sRlZ5Ey |
TLSH | T128C1B57A7A6B3B71D3A760B9A9EC38B43720504E0DB30515338D42D00BB2F78676399A |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/tests/__pycache__/test_multiclass.cpython-39.pyc |
FileSize | 20104 |
MD5 | E02727CA1F32AA860823620225137383 |
SHA-1 | 01CE6529BA789A345611B61252C867AB40DE713C |
SHA-256 | 0D189DE93F38FD4516A4C9A9FC091898CABC319DE6F1CEFFD6B5D856DB5DD9AF |
SSDEEP | 384:+Wc6xRFYmGlBqIwixvt6u6FhFvkxBzJC1m8Bpy:Dc67FYdBZrodFhd+JC1m8B0 |
TLSH | T1B192D778B8036E6BFE36F5FD40A502890E75E3399BCBC5C3D534965E2C006C91FA6A58 |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.9/site-packages/sklearn/feature_selection/__pycache__/base.cpython-39.pyc |
FileSize | 641 |
MD5 | 0160DD7C83C914E091B635EE52FC38CC |
SHA-1 | 01E24A5CB075E439A124ACAC2D8E511B80B896FC |
SHA-256 | 30174D7D87454FBBBE83856E72BF3A1807C728E5DD95CD6A74ECA3DBF0E36FDD |
SSDEEP | 12:Qba/K2ZILsS/7J5lnI5qnHA20DeExXyr6hQBlk6MRcsc3gDn:Qb8Ws63nIqnwDeExXfh0a6Aqy |
TLSH | T125F0414223093731EEE776FB20264C205BF10A6727048203BF194F4F78462C5150BE5E |
Key | Value |
---|---|
FileName | ./usr/lib64/python3.6/site-packages/sklearn/datasets/tests/test_olivetti_faces.py |
FileSize | 864 |
MD5 | 46B067B890D8EE9DCF4D28E4919A79DE |
RDS:package_id | 294806 |
SHA-1 | 01F046C372BE4464FB3C2A9DE97398EA4358A892 |
SHA-256 | E015CCE430A08EB77D9FD21AF2B4DF518954363646E02C2DC6CFC97456404198 |
SHA-512 | 26E342D5B7B72A6684E5AEA57476532E25A89D55A3DCEBA27E460A63BE877B8531C46059367CD70338C50090E0EB62DDD8681134AF55B112029BD580AAB13DE3 |
SSDEEP | 24:AF94/5eOTyiyrTNyN59L1sGJsJzUJbTm2dvbF:AFK/D+vrIN59LeGiKtaeJ |
TLSH | T11F1152057092120AB25372FA42AEF86397A3FF490F0155F0396BAA80378D9757357039 |
insert-timestamp | 1696437101.8363733 |
mimetype | text/plain |
source | db.sqlite |
tar:gname | root |
tar:uname | root |