Result for 2CB14781996D5A11456164246F5AAC9B241C2AA3

Query result

Key Value
FileName./usr/share/doc/python3-pyspectral/copyright
FileSize1603
MD514BCD434A490108B42EEF32A9B2BC954
SHA-12CB14781996D5A11456164246F5AAC9B241C2AA3
SHA-2562BF81CEF29D74E70315BAD345FE78824A19B2AA55CD83A404C79F02428DDE32E
SSDEEP48:iVQfQB/pAp9KiVid1MjoIQyoyvHqonxtn:2iybiVi3coqrdjn
TLSHT16431560D6891C7B6969013D27842A3DBF616AA9779B85040B00DC7AFDB0697F02E60A9
hashlookup:parent-total3
hashlookup:trust65

Network graph view

Parents (Total: 3)

The searched file hash is included in 3 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize8396
MD57276F59AFC86CB2C1E86822BFA6ACCD0
PackageDescriptionReading and manipulaing satellite sensor spectral responses - scripts Reading and manipulaing satellite sensor spectral responses and the solar spectrum, to perform various corrections to VIS and NIR band data. . Given a passive sensor on a meteorological satellite PySpectral provides the relative spectral response (rsr) function(s) and offer some basic operations like convolution with the solar spectrum to derive the in band solar flux, for instance. . The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI, OLCI and SEVIRI. But more sensors are included and if others are needed they can be easily added. With PySpectral it is possible to derive the reflective and emissive parts of the signal observed in any NIR band around 3-4 microns where both passive terrestrial emission and solar backscatter mix the information received by the satellite. Furthermore PySpectral allows correcting true color imagery for the background (climatological) atmospheric signal due to Rayleigh scattering of molecules, absorption by atmospheric gases and aerosols, and Mie scattering of aerosols. . This package provides utilities and executable scripts.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepyspectral-bin
PackageSectionutils
PackageVersion0.9.5+ds-1
SHA-15E3C886216C12ABF8DAC4586EFB31CE5E7539D7D
SHA-2563638B77CE6C589CD83B37822C9FADE3F61DAFE3936A0AD264B7B613F57C0FFC2
Key Value
FileSize3523364
MD5CB1911294AF0C65ECDD594BBF502BF2C
PackageDescriptionReading and manipulaing satellite sensor spectral responses - documentation Reading and manipulaing satellite sensor spectral responses and the solar spectrum, to perform various corrections to VIS and NIR band data. . Given a passive sensor on a meteorological satellite PySpectral provides the relative spectral response (rsr) function(s) and offer some basic operations like convolution with the solar spectrum to derive the in band solar flux, for instance. . The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI, OLCI and SEVIRI. But more sensors are included and if others are needed they can be easily added. With PySpectral it is possible to derive the reflective and emissive parts of the signal observed in any NIR band around 3-4 microns where both passive terrestrial emission and solar backscatter mix the information received by the satellite. Furthermore PySpectral allows correcting true color imagery for the background (climatological) atmospheric signal due to Rayleigh scattering of molecules, absorption by atmospheric gases and aerosols, and Mie scattering of aerosols. . This package includes the PySpectral documentation in HTML format.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pyspectral-doc
PackageSectiondoc
PackageVersion0.9.5+ds-1
SHA-1F61CB72C7D632608CE97620655AF2224E0181A21
SHA-256567BE85DFAC42219A15E6A697CD8A6B88E08B0B344564A51AF08ECA88B18C07C
Key Value
FileSize172096
MD5638515C3A05034D18DD0E5D428B3E7CA
PackageDescriptionReading and manipulaing satellite sensor spectral responses Reading and manipulaing satellite sensor spectral responses and the solar spectrum, to perform various corrections to VIS and NIR band data. . Given a passive sensor on a meteorological satellite PySpectral provides the relative spectral response (rsr) function(s) and offer some basic operations like convolution with the solar spectrum to derive the in band solar flux, for instance. . The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI, OLCI and SEVIRI. But more sensors are included and if others are needed they can be easily added. With PySpectral it is possible to derive the reflective and emissive parts of the signal observed in any NIR band around 3-4 microns where both passive terrestrial emission and solar backscatter mix the information received by the satellite. Furthermore PySpectral allows correcting true color imagery for the background (climatological) atmospheric signal due to Rayleigh scattering of molecules, absorption by atmospheric gases and aerosols, and Mie scattering of aerosols.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamepython3-pyspectral
PackageSectionpython
PackageVersion0.9.5+ds-1
SHA-1987C45577B9C254F644BB75981518844F9EE34B3
SHA-256AEA8177DBE8D3E880C1D06CFB50F4F27362C8EF7316E2EB41985F429DF5A773E