Result for 2C52707ACE992C67397C883EDA1EC8565280DAD1

Query result

Key Value
FileName./usr/share/doc/python3-pycuda/NEWS.Debian.gz
FileSize379
MD57DC3E7424D573812394232C6673F9952
SHA-12C52707ACE992C67397C883EDA1EC8565280DAD1
SHA-256DF8D2D4FBA6158CC9FCC9C9BD1EFA340C092EEAAF43A016A1022C6FA7962F932
SSDEEP6:XtB2ahXFvALtZbXItAK4srKUBDa9ec6QotKbYVBMGpuDzmuCqm2LnAUrn:X/otk66c6RtRomtqm+Aq
TLSHT107E0F8002D8C8F3BA2072AAAE82E82039EA8F9A120B2AC4314389CB0294931902C8120
hashlookup:parent-total56
hashlookup:trust100

Network graph view

Parents (Total: 56)

The searched file hash is included in 56 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize121614
MD5A968F7D8653138564224C83B34C9ECD7
PackageDescriptionmodule to access Nvidia‘s CUDA computation API (documentation) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains HTML documentation and example scripts.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython-pycuda-doc
PackageSectioncontrib/doc
PackageVersion2016.1.2+git20161024-1
SHA-10DE78B3768687D027F7C1ED5EE07B86972F1311A
SHA-256A2FB82540E0DA62E7B870A07EFEB2BA0B2199878929C33AAE101006DD95C7834
Key Value
FileSize358152
MD5C3825CF1F0AEDC95033009FB7B94B79D
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2021.1~dfsg-3
SHA-112B61B011445E8184C46C2B00A7EE21E1BCE300D
SHA-256DA26AF59EF98CC358ABE81F9B664005E4685AD4ECBD5F68B1121CF8C92CD3329
Key Value
FileSize314760
MD57BF0E78717DA26E6338F7BD64DFF900B
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2018.1.1-3
SHA-1194237D7D664B504399F5E9BEB56DA0152F10DE1
SHA-2560FEACB25B38F54A02704784F4224BB36C6531EEC2F66E69507FBA85570A04353
Key Value
FileSize6590628
MD560A7AD4F424B1DAB98A345B927477AFB
PackageDescriptionPython 3 module to access Nvidia‘s CUDA API (debug extensions) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains debug extensions for the Python 3 debug interpreter.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda-dbg
PackageSectioncontrib/debug
PackageVersion2018.1.1-4+b3
SHA-11C5C4B522EB7C0C34DE03A3C22FB63789912072A
SHA-25600D672EADDFA9F08764ED994BF52A7F15459D417D8BBA09AE1766132B0569292
Key Value
FileSize121664
MD55EFE49327F7B41893841B7AF02F75F66
PackageDescriptionmodule to access Nvidia‘s CUDA computation API (documentation) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains HTML documentation and example scripts.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython-pycuda-doc
PackageSectioncontrib/doc
PackageVersion2020.1~dfsg1-1
SHA-120A83F606344926C660B842A6C1BE23C771A9596
SHA-2568781434BDA773A0141FC847C193083B20167249F0E33E2D0A0ED6A414C424FC1
Key Value
FileSize466804
MD5DA783AD042E8BC1B24DD7F017C98259F
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2018.1.1-4+b1
SHA-1216F72108B66361221097E375E4CD57619E47A32
SHA-2567A9AE4FC9D93F552529DD8A9DA555A4C27DAC0151B8581BE57D7E041E349A221
Key Value
FileSize169508
MD5D56F2F2C0DB4F3E4AFB7EBF7873B9DD8
PackageDescriptionmodule to access Nvidia‘s CUDA computation API (documentation) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains HTML documentation and example scripts.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython-pycuda-doc
PackageSectioncontrib/doc
PackageVersion2021.1~dfsg-1
SHA-122A7B1868432C6B088F62D4DE343A287874CE78B
SHA-25620FF36C17CECC791E3F1C627D588061391D9D99334E0EF0898E606A48AE2EED1
Key Value
FileSize315996
MD59DAD2B920C5F38AE16418FC825678E96
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2018.1.1-3+b1
SHA-12412174B9D481D80C4933275CF9CBD46E43E7B01
SHA-25660FF2DA05EC2E8335D75BECDCFC5995F3A6FBAA1B7CE00713F30312582B9A4E4
Key Value
FileSize5017462
MD5B4CE99CF7441FC000118475B2A5FB839
PackageDescriptionPython 3 module to access Nvidia‘s CUDA API (debug extensions) PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains debug extensions for the Python 3 debug interpreter.
PackageMaintainerTomasz Rybak <tomasz.rybak@post.pl>
PackageNamepython3-pycuda-dbg
PackageSectioncontrib/debug
PackageVersion2016.1.2+git20161024-1+b1
SHA-13034AD8142AC16B9FC320E72610681999230BE81
SHA-2567D89DB9E077D478C86B6520367F9CBC9D68F41F787C20347DCC0D47FA5D6C1F0
Key Value
FileSize316184
MD52759CA0B5317934D9C1E387CFADEE0E0
PackageDescriptionPython 3 module to access Nvidia‘s CUDA parallel computation API PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python. Several wrappers of the CUDA API already exist–so what’s so special about PyCUDA? * Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code. PyCUDA knows about dependencies, too, so (for example) it won’t detach from a context before all memory allocated in it is also freed. * Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray make CUDA programming even more convenient than with Nvidia’s C-based runtime. * Completeness. PyCUDA puts the full power of CUDA’s driver API at your disposal, if you wish. * Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions. * Speed. PyCUDA’s base layer is written in C++, so all the niceties above are virtually free. * Helpful Documentation. . This package contains Python 3 modules.
PackageMaintainerDebian NVIDIA Maintainers <pkg-nvidia-devel@lists.alioth.debian.org>
PackageNamepython3-pycuda
PackageSectioncontrib/python
PackageVersion2022.1~dfsg-1+b2
SHA-13E6979DE298CF0818067A4899F2B1BBAD69D23CC
SHA-256AF4FD2CB4EFB5B2E9A1ED4352075823F959EE5E22F3FF8140215C3C6E79CE599