Result for 2847FE23FD02FEFA87B858E52D53869B82A2837D

Query result

Key Value
FileName./usr/lib/R/site-library/LearnBayes/demo/Chapter.6.2.R
FileSize570
MD5CCC509DBA6548C32E1ACBA678FDB1450
SHA-12847FE23FD02FEFA87B858E52D53869B82A2837D
SHA-2562C2AC7AD6BBC68EA2CC2C97BF0A3983CA1511ED9026FB8560B7383477661FA4E
SSDEEP6:anoGqRMqiENHPAN1AHA6AHA+kScAgEHEO2WmHf8RaZsnr5V/Hfz/ErXEQ/eaAkAy:OMMqi+HY6Fo52THERa2nrLPf1zy
TLSHT144F0E2B0811D07019315CB07C92950A2D22925233CFBA803BF3E61014F201D3C216A8D
hashlookup:parent-total26
hashlookup:trust100

Network graph view

Parents (Total: 26)

The searched file hash is included in 26 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5375C60E11D97D8CB8BF61032A2BEFF6A
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageReleaselp152.2.6
PackageVersion2.15.1
SHA-102A686E3FFA30509C7C5088BC21AA5B2B1C8B656
SHA-2562AB0D5EE58D7D6C0C885AA4A6FE0751AE33B5DB98028CA44E55B479D04AD26BF
Key Value
MD564843E9F943287E02554A7A041208BBC
PackageArcharmv7hl
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.29
PackageVersion2.15.1
SHA-104A5D34A6594A62300818A4D7F3063117829F5E5
SHA-256D4F1383DF3A0AB9A41D6D8EF700A6D1A76BB788EFEE17B72C219328304BADEAE
Key Value
MD555CEF3040BB4E6587F6FDB54B3D61908
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.15
PackageVersion2.15.1
SHA-11397DA39611B19EA6EB03048B84CC60B7F18158D
SHA-256952589FE5D29AB560A461FF5D823F42022CA94EE54FEF6586CD29500B86068DC
Key Value
MD586418BF5A63DBDE56810F5760C162BFC
PackageArchi586
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.31
PackageVersion2.15.1
SHA-11FF3EB703FF5F059010D801B82C08FBCC20268F4
SHA-256B42334EA61BD9C45C383A7046AC9A34A4CB094AC0D19506301041EDB6B08675F
Key Value
MD551BEBBEF62A6EC58665B3CF8251DDDA0
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease2.24
PackageVersion2.15.1
SHA-12F410197AE466C911CEF2387901C9ACBD4BE4A49
SHA-256277315D4085F9F6BEDB5E96A6B183D352D4DCA52F0ECF23FB328A91554B29AAD
Key Value
MD5E28A09FBBF0B70292CDFBC8C425B365F
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageReleaselp151.1.12
PackageVersion2.15.1
SHA-13866BDFFBD03C0DE6496CC97A4632638D2B5EF72
SHA-2563198FB694FA693F89782B68883F6805D2367C145C44EF7FFBC004DBC571145A1
Key Value
FileSize1075594
MD5086E6D1F1FEEBE995F81140A6B864339
PackageDescriptionGNU R functions for learning bayesian inference LearnBayes contains a collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageMaintainerDebian Science Team <debian-science-maintainers@lists.alioth.debian.org>
PackageNamer-cran-learnbayes
PackageSectiongnu-r
PackageVersion2.15-2
SHA-14E6407F72080C0CABB9AEFA245CABD6FF35A0F18
SHA-256E77568F7C15F1EB46B0DEED207FCFDF0A4F116AB5D2904341E17EBF547CF87CC
Key Value
MD5262A780CC035222BAA24361042771FED
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageReleaselp153.1.14
PackageVersion2.15.1
SHA-15DDD47D6BA887CA7AB2ADC2B167E771C88650597
SHA-25636D7B918F93244A8360F7F62C9B2EC8B10BF90F4C2F788A570ADA9791B1F8F18
Key Value
MD54702EDED0CACDAD0B9C77117ED13C423
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.6
PackageVersion2.15.1
SHA-15F1F4961C6C269CF85AD0C9163567C35301A006D
SHA-2567A57729829B4FBB4234E1F9F8D954D9E05B50169B5EE9A38E5B142DD7ADFED10
Key Value
MD5B685B913CD2C18A916FB45308DCC68A5
PackageArchx86_64
PackageDescriptionA collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling.
PackageNameR-LearnBayes
PackageRelease1.31
PackageVersion2.15.1
SHA-1668F26064F3AF757874499A0B4BA51E5B39E1224
SHA-2561A58DF996E307D77188BAE983899A6D320D6AA1CC3B3A50F63E80200F359EAE3