Result for 25D008CC9407FE74E848986127E114E3A5453C83

Query result

Key Value
FileName./usr/share/licenses/libspqr2/License.txt
FileSize1666
MD51C0C48EDF24526B3CDA72CE1A8A20B1D
SHA-125D008CC9407FE74E848986127E114E3A5453C83
SHA-2567DE5312864153C826F2A373FBC48A29494A1786F38F0CA0A00235D8F5544F383
SSDEEP48:i0TL2F1sgN/byJHMGPFLUx8L3Ddx8yLcz:pXyN/6JUxi3hx8ocz
TLSHT1E431525D274443B728D2015B3D9A94CEE30E66B7721B4460348CC28D1F1BA7493F2AF8
hashlookup:parent-total55
hashlookup:trust100

Network graph view

Parents (Total: 55)

The searched file hash is included in 55 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD52C43326C617C2ACE56455E20EB5F5509
PackageArchx86_64
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease5.fc33
PackageVersion5.4.0
SHA-106D371D6EBB8E577DD4BF23D49DE048B3807B1F7
SHA-256EA3F7D8D0D6264775E29DF28CB2474D0B5F9F1549251740B6462744D15473AC0
Key Value
MD5DEA6BA35AB03D3DA921C1A6847E72862
PackageArchaarch64
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease5.fc33
PackageVersion5.4.0
SHA-10A8E05A260AF4977FCA7890A0B89A710E8427180
SHA-256A2BC8D58F7E8D56EFCFC3D10F126B5FDAA2E0FB167FE23D96A88F6A896C4B2C0
Key Value
MD5B4B02BE97E59EC3BC4055A43C8F96DFF
PackageArchx86_64
PackageDescriptionSuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Parallelism is exploited both in the BLAS and across different frontal matrices using Intel's Threading Building Blocks, a shared-memory programming model for modern multicore architectures. It can obtain a substantial fraction of the theoretical peak performance of a multicore computer. The package is written in C++ with user interfaces for MATLAB, C, and C++. SuiteSparseQR is part of the SuiteSparse sparse matrix suite.
PackageMaintainerhttps://www.suse.com/
PackageNamelibspqr2
PackageRelease150100.9.2.3
PackageVersion2.0.8
SHA-10C348CFAA76AF060EC1FE0AF0A440C3DE4F96C6D
SHA-25677223CD81E16F88A30A188FB40834364E21A5548CB741133CC13FB15F3C8C3F9
Key Value
MD514E83CECAADA5D85B02174822FB1CAA1
PackageArchi686
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease6.fc34
PackageVersion5.4.0
SHA-10EED438F5CEE0BD7061DD38ABEF57E7BD3A39438
SHA-2568FEF5182E19843B5989DC01637CC4839678C8B7FF67E7A05F353AA4E21B54689
Key Value
MD5BD934B5F5BC607F0CD2DA0507B325821
PackageArchs390x
PackageDescriptionSuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Parallelism is exploited both in the BLAS and across different frontal matrices using Intel's Threading Building Blocks, a shared-memory programming model for modern multicore architectures. It can obtain a substantial fraction of the theoretical peak performance of a multicore computer. The package is written in C++ with user interfaces for MATLAB, C, and C++. SuiteSparseQR is part of the SuiteSparse sparse matrix suite.
PackageMaintainerhttps://www.suse.com/
PackageNamelibspqr2
PackageRelease150100.9.2.3
PackageVersion2.0.8
SHA-1153659AF84F50A697322DB99D5577E64F3B9C907
SHA-256105BDA4AE537EBC7ABE541F27D8240E426A152D9740FF252E11A2DCA469F1984
Key Value
MD579785F9563900A70796130E87B1F84A8
PackageArchx86_64
PackageDescriptionSuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Parallelism is exploited both in the BLAS and across different frontal matrices using Intel's Threading Building Blocks, a shared-memory programming model for modern multicore architectures. It can obtain a substantial fraction of the theoretical peak performance of a multicore computer. The package is written in C++ with user interfaces for MATLAB, C, and C++. SuiteSparseQR is part of the SuiteSparse sparse matrix suite.
PackageNamelibspqr2
PackageRelease85.3
PackageVersion2.0.9
SHA-12038ECBFFF8C54F6D55064B90DD6405BF8EF4422
SHA-2568E97296001CA9FBA9A167D87B13757A38F9FAC61E0D971629553C04A3D5B989C
Key Value
MD5566D7ABCD89B1FE1CD51C1646E46D608
PackageArchi586
PackageDescriptionSuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Parallelism is exploited both in the BLAS and across different frontal matrices using Intel's Threading Building Blocks, a shared-memory programming model for modern multicore architectures. It can obtain a substantial fraction of the theoretical peak performance of a multicore computer. The package is written in C++ with user interfaces for MATLAB, C, and C++. SuiteSparseQR is part of the SuiteSparse sparse matrix suite.
PackageNamelibspqr2
PackageRelease85.70
PackageVersion2.0.9
SHA-12401E7801A82FE5E2BB160A40513E48E4A068653
SHA-2562564A2BF9BA17CE714C931A89630CA9F1F9D2E3453D7863D42A7138D3B0B8DF8
Key Value
MD5B2F6E3088F153FA4030C34B48F677B05
PackageArchx86_64
PackageDescriptionSuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Parallelism is exploited both in the BLAS and across different frontal matrices using Intel's Threading Building Blocks, a shared-memory programming model for modern multicore architectures. It can obtain a substantial fraction of the theoretical peak performance of a multicore computer. The package is written in C++ with user interfaces for MATLAB, C, and C++. SuiteSparseQR is part of the SuiteSparse sparse matrix suite.
PackageNamelibspqr2
PackageRelease85.1
PackageVersion2.0.9
SHA-125E97EB181AA8B4100738CA2D60B16CEE00076A6
SHA-2560E76DEEF9B1BC4E8D4EE1C8C54BB872AC476168B548C3A109ECB1897F4AD4568
Key Value
MD5B9F56469CEA5D762B3A9C2424051C04E
PackageArchi686
PackageDescriptionsuitesparse is a collection of libraries for computations involving sparse matrices. The package includes the following libraries: AMD approximate minimum degree ordering BTF permutation to block triangular form (beta) CAMD constrained approximate minimum degree ordering COLAMD column approximate minimum degree ordering CCOLAMD constrained column approximate minimum degree ordering CHOLMOD sparse Cholesky factorization CSparse a concise sparse matrix package CXSparse CSparse extended: complex matrix, int and long int support KLU sparse LU factorization, primarily for circuit simulation LDL a simple LDL factorization SQPR a multithread, multifrontal, rank-revealing sparse QR factorization method UMFPACK sparse LU factorization SuiteSparse_config configuration file for all the above packages. RBio read/write files in Rutherford/Boeing format
PackageMaintainerFedora Project
PackageNamesuitesparse
PackageRelease3.fc32
PackageVersion5.4.0
SHA-12625D2027D52772DE416A4F6EB3B0DB5BB0BC6D4
SHA-25607CFE01177ED481017D3BA9534F9F96C62BC3B8D7A33FBC62BE306F1CFEE43FC
Key Value
MD51EDEF97D71B089511624EB598457F936
PackageArchi586
PackageDescriptionSuiteSparseQR is an implementation of the multifrontal sparse QR factorization method. Parallelism is exploited both in the BLAS and across different frontal matrices using Intel's Threading Building Blocks, a shared-memory programming model for modern multicore architectures. It can obtain a substantial fraction of the theoretical peak performance of a multicore computer. The package is written in C++ with user interfaces for MATLAB, C, and C++. SuiteSparseQR is part of the SuiteSparse sparse matrix suite.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamelibspqr2
PackageRelease43.6
PackageVersion2.0.9
SHA-12E27565F75816EA46411A2ED143250669CF56CB3
SHA-2569A12046027F86498D11D770497C64A375ACB61253DE77522FD4E9B1232FE9001