Result for 24EB369C04CAFD1E5769023995AAD7E731196E29

Query result

Key Value
MD5B551AF23B2A6D51EB2BE158ACF8E3728
PackageArchaarch64
PackageDescriptionThis package contains the Octave-plugin for shogun. The Shogun Machine learning toolbox provides a wide range of unified and efficient Machine Learning (ML) methods. The toolbox seamlessly allows to easily combine multiple data representations, algorithm classes, and general purpose tools. This enables both rapid prototyping of data pipelines and extensibility in terms of new algorithms. We combine modern software architecture in C++ with both efficient low-level computing back-ends and cutting edge algorithm implementations to solve large-scale Machine Learning problems (yet) on single machines. One of Shogun's most exciting features is that you can use the toolbox through a unified interface from C++, Python(3), Octave, R, Java, Lua, etc. This not just means that we are independent of trends in computing languages, but it also lets you use Shogun as a vehicle to expose your algorithm to multiple communities. We use SWIG to enable bidirectional communication between C++ and target languages. Shogun runs under Linux/Unix, MacOS, Windows. Originally focusing on large-scale kernel methods and bioinformatics (for a list of scientific papers mentioning Shogun, see here), the toolbox saw massive extensions to other fields in recent years. It now offers features that span the whole space of Machine Learning methods, including many classical methods in classification, regression, dimensionality reduction, clustering, but also more advanced algorithm classes such as metric, multi-task, structured output, and online learning, as well as feature hashing, ensemble methods, and optimization, just to name a few. Shogun in addition contains a number of exclusive state-of-the art algorithms such as a wealth of efficient SVM implementations, Multiple Kernel Learning, kernel hypothesis testing, Krylov methods, etc. All algorithms are supported by a collection of general purpose methods for evaluation, parameter tuning, preprocessing, serialization & I/O, etc; the resulting combinatorial possibilities are huge. The wealth of ML open-source software allows us to offer bindings to other sophisticated libraries including: LibSVM, LibLinear, LibOCAS, libqp, VowpalWabbit, Tapkee, SLEP, GPML and more. Shogun got initiated in 1999 by Soeren Sonnenburg and Gunnar Raetsch (that's where the name ShoGun originates from). It is now developed by a larger team of authors, and would not have been possible without the patches and bug reports by various people. See contributions for a detailed list. Statistics on Shogun's development activity can be found on ohloh.
PackageMaintainerFedora Project
PackageNameoctave-shogun
PackageRelease2.fc24
PackageVersion4.1.0
SHA-124EB369C04CAFD1E5769023995AAD7E731196E29
SHA-256342B47FC42D8855927347133DEDE4C9E911C6DE9E621511C5D384F64C9FE1096
hashlookup:children-total203
hashlookup:trust50

Network graph view

Children (Total: 203)

The searched file hash includes 203 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/tools/save_as_double.m
FileSize164
MD5035D9C8E58FDEC374BB2EB89A37501CA
SHA-1002335328EEECCA592C4C5F125373DCFDB526AC0
SHA-25605085AECD5C3E1357B67DBAB3D507FDF4255E525527203B41E6CD95A36E21162
SSDEEP3:TMQPazip39AEu6fnXXhAEIzotW11uv0oXt5kVR/FtLSJACE3FhJQEevv:Az+3k6/WoO1uMVLtOt8a3
TLSHT1F4C08C67F9C2B18262B101100045B93DFE047164042BAF8784CA80F8BC3AEA59B03C3F
Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/kernel_sparselinear.m
FileSize505
MD592C731671F15FE6BE20B9792A92B566B
SHA-100F25018752E95321A0F2B96B0721913F8183568
SHA-256FEC2C540914235E81FFB4D704B50DD6780C3D22CE668E449C251B21692BAFBA8
SSDEEP12:gu2zU/zdolAn1P0bAjP4VcbaRgabw2XxLTMtgD7qGunabs4azdbpqhdnabs4adYn:0zU/zd0ihj2pTMiaznag4azdbIhdnags
TLSHT192F0591B9AAAE7C7AC73141AF6C9168B4AC204CFD9225F024A9CD34416D35E38049EE6
Key Value
FileName./usr/share/doc/shogun/examples/octave_modular/distance_chebyshew_modular.m
FileSize1928
MD548F1569927083C2FCE07CFBF3F87E139
SHA-10131A0F80FE6B1267A48BB913EF5507A8ABC0B33
SHA-256BC4B925038A279B133A1F0086122A7DD547790EFCD476D7B3E5CDB707964DF90
SSDEEP48:58WEiqdF686LlSdvX0ZibTS/5BRfCL9xTVC9Fh:58dDFn6L4ZXpbTq5zfSBCPh
TLSHT1B241E26BA3162236CDE620E1F7D87F472587D54F873143292FDCC154608C9B7A2B6798
Key Value
FileName./usr/share/doc/shogun/examples/octave_modular/classifier_knn_modular.m
FileSize846
MD5E37F0D2AF27F3AD724A174188B127E62
SHA-10427CD32ECFA48635F447DBDB8D978D5411125AE
SHA-25651884148969A6B1FD1D1C286030689CA15A0B5E14DDD374E047928D56ADE57FF
SSDEEP24:C+KvnbS//pgcWZhvOdaFJA9IEGTo9XpYLldcDb6:Cxv2Xp+ZzFW9SQpY7cDb6
TLSHT10D01DC069F342122C9B739EEC59879932AE305CF42C14034CBBCD82002DB9F1A665A6A
Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/kernel_spectrum.m
FileSize2801
MD5923899F100679F738A6886E316AB0283
SHA-105518FF7D9FBF3593927C0E94C05F793EB6BC5BC
SHA-25669FA19C375905228EB4755F726C508194C1F97D4CCD423C8815E88A4F92338CA
SSDEEP48:CrtrPGmqwDL7CEXesbjkI6MjB0webExLGd6j0we8eZnHYj0we8eLp:ChbXqoGsbYI6UmAoYekCp
TLSHT1345146B6E35A6FB261F3A06AC4CD434637E0903B86711721F79D47D00B92A458E3AAD5
Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/distance_jensen.m
FileSize1889
MD5DB8272DF6E420661DE8876D408BDA64A
SHA-105F90463EDBB6B4F1BA70722A2E4D2F364D9EADE
SHA-2560A1EFDF9273A469D6B8222961DB3D27D237EFB3CE4142CEDBB23AA437B2173FF
SSDEEP48:58WEiqdFEKKfjlSdaXsd4dYXB3kynDRg1aGf5rJPY:58dDFElj40X9YXB7eDtw
TLSHT16E41332A638613A7D8E210D3F7C86F470A4A548F93754B152DEC8290518DCB262BFFD8
Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/kernel_poly.m
FileSize775
MD50F62D0E4D94EEB7C3CCBAE06769C1673
SHA-106AEFA06F1758B8DEB84CCF2D95BDE77C34290DB
SHA-256964916CCD8CB6FB03052D60C3F1C91CCAE86B214F746B3F054FAA7B9F9D3DCED
SSDEEP24:hub1XNAHTJVj9/zd0F1Yc6jkbnag4azd/nag4adY:kJNAzJF9Dljinan+/nanSY
TLSHT13601BD6AE1E697A3F8B36C35E1DE62D30A8600DF52A087068E44C75411C35F26126FF4
Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/classifier_svmocas.m
FileSize1340
MD57E0D37E5A7F3380B9667A889595ECE36
SHA-106BA250F85458F9E2281CF1AC69AEC811DBD90BC
SHA-256019D94B7B3F02A376EF8B943C85A656DF902527F3A88A4C73E343AE1AEE1C674
SSDEEP24:plTIBPR01qbR54LTUakeU4l1n4tNcq8v3dTFmuaz6gqTALUEKRkdbIhdR:plTi500q41okLCFcrqTALUBSbIh
TLSHT177211E2A67157B73C4F3345EA0EC428607F1609F96207B36EBFCEB4455968B198A33E0
Key Value
FileName./usr/share/doc/shogun/examples/octave_modular/distance_jensen_modular.m
FileSize1952
MD59837351955730B627CCB800C8CAF6489
SHA-1088F2302D3CCE4F07EC589990DF5EAD7D7BF7142
SHA-256169FCE0CF87FE97A341BF08D1606C3041BD2692087BDDACE969769C774E8BDFE
SSDEEP48:58WEiqdF686LlSdvX73o7ZibT73Y/5gO1L9xQVC9Fh:58dDFn6L4ZX7YIbT7s579eCPh
TLSHT13E41D22B67522333CCE520E2FBD87F871656D44F837942252FEC8150519C9B692F7B98
Key Value
FileName./usr/share/doc/shogun/examples/matlab_and_octave/tools/README
FileSize175
MD54B234CC5AB5FA383B2B9778992FB95BD
SHA-1097605F6DE519AC62180D303158A4DBBDA4C6105
SHA-2564FDF80911850750F2A14A7E36536C20CB38B102382E1192D90B3652D07C07BD2
SSDEEP3:dVN6a0sLKAVAFNPbuMLRkWp74qBbmXEVN+JMBFQOCKsVPLN8FyJKRa5NYJNNK3Q4:d6BsLFg1L74qBs8NPFxCRVPRZJKuENCF
TLSHT11DC080151E35AFDDD75685D1055395AD0748C2A540D387CCD44415F9364548D84D77C0