Key | Value |
---|---|
FileSize | 1969080 |
MD5 | C719F5463C6245C30A186F919040042D |
PackageDescription | Python package for convex optimization CVXOPT is a Python package for convex optimization. It includes * Python classes for storing and manipulating dense and sparse matrices * an interface to most of the double-precision real and complex BLAS * an interface to the dense linear equation solvers and eigenvalue routines from LAPACK * interfaces to the sparse LU and Cholesky solvers from UMFPACK and CHOLMOD. * routines for solving convex optimization problems, an interface to the linear programming solver in GLPK, and interfaces to the linear and quadratic programming solvers in MOSEK * a modeling tool for specifying convex piecewise-linear optimization problems. |
PackageMaintainer | Ubuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com> |
PackageName | python-cvxopt |
PackageSection | python |
PackageVersion | 1.1-1build1 |
SHA-1 | 22E926D8EEEF74CE1D7EC09C9D36034F871CD6B6 |
SHA-256 | 0D191293DF3EF1336B95D67AB11DD44350AE3ADE8700A722575E2CD3401EC146 |
hashlookup:children-total | 97 |
hashlookup:trust | 50 |
The searched file hash includes 97 children files known and seen by metalookup. A sample is included below:
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap10/l1svc |
FileSize | 497 |
MD5 | 807B22DC8014D1B7E6768D6B62CBF616 |
SHA-1 | 00BEC9B75D0619A6A99864C48EA703E1AFF37E66 |
SHA-256 | F4EF025AE46900DE439C2D98A061F15AB13BD46416E48E9243D95D158A78912F |
SSDEEP | 12:He4AF7NQWQ7HBtu4Zz7lyAKRbogbZKxBbhKgFpKBIWEg:+NF7Ny7S4Zz7lcbogbZKvbhKvMg |
TLSH | T160F09E0B60627D24EBB7DCD5D18D45997FF500AE1D113E951170070ACE698B05CE3CDE |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/filterdemo/README |
FileSize | 445 |
MD5 | 1836C6FE26415939D5A6F32D3E1A1E34 |
SHA-1 | 020D546E5EF64BE6333D2E45BE1B1DFC32F83C35 |
SHA-256 | E0BD74AB3AB9E69F55A77A6DEDC7BDE44750C3D250DAFABB2FC61E121AF03095 |
SSDEEP | 12:eZsDkMJ4/REY7AIKI08goCShQRv26NepL5XFHncqCcoCPPpG:oKkMJ/Y72I0KCQ0v26UpLZFHncjCZG |
TLSH | T123F02300C40D7DF4E342201BFD321470D8B5C90C23EA30195CFC56E55943DB0D4D1A90 |
Key | Value |
---|---|
FileName | ./usr/share/doc-base/cvxopt |
FileSize | 897 |
MD5 | CAD6E0ABED96D43BF642EB9273BF8F1F |
SHA-1 | 02420D85C5115E7CA1D03CC20DA14992EB80654D |
SHA-256 | 38F54547C2E74F57E87973242DD743D162281EC8F4A96CC808076EB5C83BB79C |
SSDEEP | 24:6tAyp0aJbWGfxyq8ciKKSuCYqZxpNqDEx6AYqLNm438SsqCSdVlE:QKCbuq8ciKBYKzDxfYaNm4TjxdVlE |
TLSH | T10911231C916235BC451271CDC78119108F3815A9720B63994C7844B233CB9D9937F3EB |
Key | Value |
---|---|
FileName | ./usr/lib/python2.5/site-packages/cvxopt/fftw.so |
FileSize | 30516 |
MD5 | 8FD67C1E7F7A8B2CDF1B4C407D507E82 |
SHA-1 | 03A6B7EFF35926A63B5EBB986D0F96489B41F844 |
SHA-256 | B2D7B9B833934EB6711514560353D7F1165FFF79915ED70BBC218F48502593A5 |
SSDEEP | 768:atUGKUKDXyrHEEYbVVbV9qSwOOYMmUyfyKl:atUGXKDXyrHEEYRVbV9qSwOOj |
TLSH | T175D2DA55A5119B7BC0DC3E35F7488394372E8B22D2AB506ABC0C98783B46EA84D77727 |
Key | Value |
---|---|
FileName | ./usr/share/pyshared/cvxopt/printing.py |
FileSize | 5495 |
MD5 | EC8EDB24392E168A698F0782790DEC56 |
SHA-1 | 0556AB5D8E5A8B3DACD60646E00DCC84C6B2B470 |
SHA-256 | D0D873CCA1D6850DFB23DE84C24692A4EEE1A4EB9770FE1BEAA5BFB878E0DCF8 |
SSDEEP | 96:PvPzR5w1we2/SfGczwtQ10HS9MizYu/UCtgi:X7R5w1weaSfvwtgUSqizYpCai |
TLSH | T126B12249A5713279C18F056B5CDA404F232BCA97771895303A1D63E90FC36B657B0FB9 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap4/rls |
FileSize | 2150 |
MD5 | 2A30115F6FD41D1A7A42C043BB92AD80 |
SHA-1 | 09C6C645F20A77C3DA7D67B6DA4F3DC9071B2561 |
SHA-256 | 53269EBCE14E334B2F6228C18BFFBE13A3603A4EE9F0B97EE7AC203D3AC508E8 |
SSDEEP | 48:jsgIh5vtaKKgLQmKmkRaaqL8PecqLlZ9GQffQn15eXiYtqf:jsvXv3KgspnvPeHQw615eyYk |
TLSH | T10641745EF453BFB90D5BC0BED2E93A094B6921BB8D09A912341C2B55C7D3CCC5074A16 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/huber |
FileSize | 1815 |
MD5 | 0018CD52B9B1E9D11559CDC8B55DB98E |
SHA-1 | 0F19013FC870E43C5D00F21930040DFE0E433299 |
SHA-256 | 759E90D83EE2115618153D69735C1E13478448BA70E7ECBC120F0B03CC2ABB8C |
SSDEEP | 48:+2s7ngZaTVnWX8LhwO2VFXWxKyS2kDHVYZp8:+2sLnVTL6O7dSDRYZy |
TLSH | T19531FF28E26BA01E86CBC0B6F4D4FF930E51859DBD06AC56772C9DC4BB0B5558E3C287 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/book/chap6/inputdesign |
FileSize | 1840 |
MD5 | 724FDCD7D1DBB7D02DA5E89D8F04A5A0 |
SHA-1 | 13D7FCB341784540EE1244D9F288D0DC5E586772 |
SHA-256 | 9B53B64C8857CD85C4838C00A69B4496A140AC25584D5868E57707699DA819F3 |
SSDEEP | 48:+2Ajn5rJZnKhaQ9GwamkZrm1gG1UQyOgEgeFhgEf:+2Ajn5rJZnMJYVmkZrm1gG1hyOgEgeFD |
TLSH | T10931EE0A77CE5D56575FE1EDE3E13B05077A826E3E1E2876B13D2D58AC8B8CB4832810 |
Key | Value |
---|---|
FileName | ./usr/lib/python2.6/dist-packages/cvxopt/gsl.so |
FileSize | 10748 |
MD5 | 8AB98CDC09AFD8B93124E3392BB8B3A3 |
SHA-1 | 1760DDE0EA2B3BE42C3725530416304CC2A736AA |
SHA-256 | 61A84A5A77FD21AC89D70C8A2319A99FEF5119750CEB3C3A38EDC448A7AA753A |
SSDEEP | 96:qHTRsctm3uzXF0+fRW27c743mY7b35+gRT2m2Hc1qKVtZdccsdoP0SPdH5qui1CW:ee2m3uziOwc243lp4c1qgZecsdBuEF |
TLSH | T1A5223AF1FC81AB77C9E151F971ABC7503735D400956BA3A3724D80663B07638A536F84 |
Key | Value |
---|---|
FileName | ./usr/share/doc/python-cvxopt/examples/doc/chap8/coneqp |
FileSize | 608 |
MD5 | 7B609C1E5DFD914CFC8F0FCA3C998A8D |
SHA-1 | 1841C40EEB0074795CED94E3150BEF8B5EB12C08 |
SHA-256 | B9706533031DF4EB65175C810C55505DF9E0F0D59A98C4E05FB747E7E48EA2C4 |
SSDEEP | 12:HYGtjXK/sOf7NQULrVlBE9I81NaJnjkar4nkMIal3nV7:4GtjnC7NfPB+I8ijkdkMlF7 |
TLSH | T111F0284BC006B828E6B4E02A885A2C920E75DD086D2BB0003D3E55A08FAA2A2CD35756 |