| Key | Value |
|---|---|
| FileName | ./usr/share/doc/weka/copyright |
| FileSize | 26819 |
| MD5 | C31085FD1ADE43F9B4505B53170F318B |
| SHA-1 | 228DC2118A0376D5813F18314FB30183817C3B2F |
| SHA-256 | 6C4433184B832AC8190828A90ACFB6BBEA1100A624A58DA3E5E79E4DC7FFAE47 |
| SSDEEP | 768:o7TZ+jBt5YVlZyRPoRnkWDN6FlPt1DFFFYs8D6U1Pgboy2578YyBbq/smgX:WidGk |
| TLSH | T15BC2416D7C14CB334D9352825A4600C7F322A27EB86D40E57695C37F9127E2A47FFAA8 |
| hashlookup:parent-total | 10 |
| hashlookup:trust | 100 |
The searched file hash is included in 10 parent files which include package known and seen by metalookup. A sample is included below:
| Key | Value |
|---|---|
| FileSize | 4741684 |
| MD5 | D03BBD5911AA088145547AE1D9410E90 |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the documentation. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | weka-doc |
| PackageSection | doc |
| PackageVersion | 3.6.10-2 |
| SHA-1 | 0DCB2C9F7011EBB669E1187794E206613866FBBF |
| SHA-256 | 24B836F62CCB7CFCDF8BAE300165E1DD6FD9D89FBD18DFA248BE22876C9A2A17 |
| Key | Value |
|---|---|
| FileSize | 4763266 |
| MD5 | 3972925652915ED8C857BAE63A9BB3F5 |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the documentation. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | weka-doc |
| PackageSection | doc |
| PackageVersion | 3.6.13-1 |
| SHA-1 | 89FCB64503135EDBD6598C3F272087F47329AFA8 |
| SHA-256 | 5417A5EDCE4660F90B96705541EAA06317E51B0CF98734A789207D493ED6FFC2 |
| Key | Value |
|---|---|
| FileSize | 4758698 |
| MD5 | 395F555A6E718A6B2C0E1DE71592AADD |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the documentation. |
| PackageMaintainer | Debian Java Maintainers <pkg-java-maintainers@lists.alioth.debian.org> |
| PackageName | weka-doc |
| PackageSection | doc |
| PackageVersion | 3.6.11-1 |
| SHA-1 | CFDCD26A0ED845AFABE8E92F027D15660E249381 |
| SHA-256 | 015228BF7DC31378600CC3329219DA0788DBB4799C6C4275B305D90DC84F3D80 |
| Key | Value |
|---|---|
| FileSize | 4773034 |
| MD5 | A80C6D391FCD9DA3F5C470090E3BFB10 |
| PackageDescription | documentation for the Weka machine learning suite Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the documentation. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | weka-doc |
| PackageSection | doc |
| PackageVersion | 3.6.14-1 |
| SHA-1 | 05AD641B6678E7C3013A36E6A0D270C660496875 |
| SHA-256 | D2CD69B7451710481D83C5DBAE746A4ECDDAECF0F3B879ED7763DBE0885875BA |
| Key | Value |
|---|---|
| FileSize | 7218182 |
| MD5 | 06D48686F139062C279D8E87C6648FEE |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the binaries and examples. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | weka |
| PackageSection | science |
| PackageVersion | 3.6.13-1 |
| SHA-1 | 9ED5CEF0A52B33F3F967E5D418C219C5759319F6 |
| SHA-256 | AC823BD17B2D411B4A251CFFBAAB8EB483D006833C2729BEB5190B9697CD3446 |
| Key | Value |
|---|---|
| FileSize | 7152380 |
| MD5 | 146A5444304D329D1FFA210C62614C8C |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the binaries and examples. |
| PackageMaintainer | Debian Java Maintainers <pkg-java-maintainers@lists.alioth.debian.org> |
| PackageName | weka |
| PackageSection | science |
| PackageVersion | 3.6.11-1 |
| SHA-1 | C9F4C32D1FF89528B4E6BD1802C8A06FBC262ABF |
| SHA-256 | DD4C6A20507E158944E5137BA9AA805CA07441C77F375FE8A1A98CD9EFBFC021 |
| Key | Value |
|---|---|
| FileSize | 7247438 |
| MD5 | D0134106C97DA329E2FED7C25A6F61E3 |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the binaries and examples. |
| PackageMaintainer | Debian Java Maintainers <pkg-java-maintainers@lists.alioth.debian.org> |
| PackageName | weka |
| PackageSection | science |
| PackageVersion | 3.6.14-1 |
| SHA-1 | 087ED400830970EE83AEB6D20C3F5A428F0554A5 |
| SHA-256 | 288607FBC9583C52A17964F249184AB9B56A35212FE065AAC5676BCC60C7CF49 |
| Key | Value |
|---|---|
| FileSize | 7145326 |
| MD5 | 7C98FB6232B3BA5FD72E6C0C6A2161D2 |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the binaries and examples. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | weka |
| PackageSection | science |
| PackageVersion | 3.6.10-2 |
| SHA-1 | 4D21D1A468DCFAAF2A6B341C55ABEA6EF9B182EC |
| SHA-256 | 9A40CC6BF0699266C8E050985D3B4948736FFE297F9AA0A0E52C10B73EF26A06 |
| Key | Value |
|---|---|
| FileSize | 7246694 |
| MD5 | AA04C61E29293F93DD355197F5D788DA |
| PackageDescription | Machine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the binaries and examples. |
| PackageMaintainer | Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com> |
| PackageName | weka |
| PackageSection | science |
| PackageVersion | 3.6.14-1 |
| SHA-1 | 74670066A94D07AB8A5E88608BBC031BAEAC9BD6 |
| SHA-256 | 1F6CCFCE837B05A26C7A937E629CCAD85A393C020B12ECA91B8B8245F54670FA |
| Key | Value |
|---|---|
| FileSize | 4773760 |
| MD5 | F762C2285A8EFEFCDBE7B3B2E731050A |
| PackageDescription | documentation for the Weka machine learning suite Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the documentation. |
| PackageMaintainer | Debian Java Maintainers <pkg-java-maintainers@lists.alioth.debian.org> |
| PackageName | weka-doc |
| PackageSection | doc |
| PackageVersion | 3.6.14-1 |
| SHA-1 | 035BB36EF2ADD95137024A6E4092B2A77D6090FB |
| SHA-256 | 53B621118EF773E031264740267EC072418EF8CB90D9D554DA90BEA6948D895E |