Result for 215D418997E2272E669D58B8AAE030CA5B25CEDC

Query result

Key Value
FileName./usr/share/dart/cmake/dart_optimizer-nloptTargets-relwithdebinfo.cmake
FileSize985
MD5EC2561ED00520944AC7D30884519CE6C
SHA-1215D418997E2272E669D58B8AAE030CA5B25CEDC
SHA-256FEA169686E45CB9E39BA67A2DA7539483BAA71BF4D6C19DDB70D0D1D390364E1
SSDEEP24:x3m7dS0qUMYAAJKfZJeIWJYijFJOJIheJqeJHjFJzjUu:FJUM1idmDUu
TLSHT1C211CCB14FD80BB7016FDEC1BC638104D314C2BB876A3E6F44A91BB961A03A5120E8CB
hashlookup:parent-total5
hashlookup:trust75

Network graph view

Parents (Total: 5)

The searched file hash is included in 5 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize24928
MD5BEBDFF8A7EE30D57726293B40140E1C0
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b1
SHA-159B021698BC9B9C1D2CA5A560AC80FB1BCCBFAA6
SHA-256CB1261F4F57FFA5726B107960A35DD6A6E240B75EFF2C3FD7E0B9CC2CB156FAA
Key Value
FileSize24584
MD50D1DDCC26EA68E0018076AB58A527F31
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.9.5-3
SHA-1300F63457B23ADF9737FFB55E812B905E72C5C5A
SHA-256CE144F761C93F7B5B689CB6C8A903C41337E730B41BC0D55ECA894E75FAB8152
Key Value
FileSize24876
MD52B5D04A1D2F301D3236D360248AF60F6
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.9.5-3+b1
SHA-10D5646CF21040D66F38740FA4D332533D6D518DB
SHA-256B4CFF8FA7F6887E4C17F508AEEC849A82ACF31EB99466547235F3DFDA5223E11
Key Value
FileSize24928
MD57495A24BFBEF8A382F43E4DF2D9F985A
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.9.5-4+b2
SHA-19BA9A8AF9A96234336109A5A99A87C2C3312E345
SHA-256E5AC236CA00CA42C1272B07EB67FC307A2CFCE4CA5F25E8D38869A5007AAEC18
Key Value
FileSize24668
MD50DD2FC402E12AD950FA7FEF9ADADDABF
PackageDescriptionKinematics Dynamics and Optimization Library - nlopt optimizer dev DART is a collaborative, cross-platform, open source library created by the Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data structures and algorithms for kinematic and dynamic applications in robotics and computer animation. DART is distinguished by it's accuracy and stability due to its use of generalized coordinates to represent articulated rigid body systems and computation of Lagrange's equations derived from D.Alembert's principle to describe the dynamics of motion. For developers, in contrast to many popular physics engines which view the simulator as a black box, DART gives full access to internal kinematic and dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces, transformation matrices and their derivatives. DART also provides efficient computation of Jacobian matrices for arbitrary body points and coordinate frames. Contact and collision are handled using an implicit time-stepping, velocity-based LCP (linear-complementarity problem) to guarantee non-penetration, directional friction, and approximated Coulomb friction cone conditions. For collision detection, DART uses FCL developed by Willow Garage and the UNC Gamma Lab. DART has applications in robotics and computer animation because it features a multibody dynamic simulator and tools for control and motion planning. Multibody dynamic simulation in DART is an extension of RTQL8, an open source software created by the Georgia Tech Graphics Lab. This package contains NLOPT optimizer headers and other useful tools for development.
PackageMaintainerDebian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
PackageNamelibdart-optimizer-nlopt-dev
PackageSectionlibdevel
PackageVersion6.9.5-4
SHA-1D36A86AA273142BE27306CAEAAA31801EA206B07
SHA-2564810300C2AE6D0BA0DAFF2D560DA8DD71E144A8CDCB97BF282BC71F29CD15D75