Result for 214DFAD306EA2EAFC13A7D8165D6DA8BECA67C50

Query result

Key Value
FileName./usr/lib64/R/library/CVST/R/CVST.rdx
FileSize818
MD58E41FB2A5876AB34CBBEFDE267827820
SHA-1214DFAD306EA2EAFC13A7D8165D6DA8BECA67C50
SHA-256BA585FC8C2A9ACDED56DE130C6FCAAA8E709F67D8B3324C184CAB19ED5E63913
SSDEEP24:X+5BsBP5G0fvhOe0l/PpJ9TIghRFHptOj/:X+50P5GQl0F39TIghRFJ8b
TLSHT196014653618D21EAB59313BF598F71BB945AB98850D95041593814111797A5ACF03C19
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5D00ED811A2D5223B90CF4FB97D1BB0CE
PackageArchx86_64
PackageDescriptionThe fast cross-validation via sequential testing (CVST) procedure is an improved cross-validation procedure which uses non-parametric testing coupled with sequential analysis to determine the best parameter set on linearly increasing subsets of the data. By eliminating under-performing candidates quickly and keeping promising candidates as long as possible, the method speeds up the computation while preserving the capability of a full cross-validation. Additionally to the CVST the package contains an implementation of the ordinary k-fold cross-validation with a flexible and powerful set of helper objects and methods to handle the overall model selection process. The implementations of the Cochran's Q test with permutations and the sequential testing framework of Wald are generic and can therefore also be used in other contexts.
PackageNameR-CVST
PackageReleaselp153.2.3
PackageVersion0.2.2
SHA-1EE84C0AEF87804DA73D07E76C76301F4A3A43C15
SHA-256746FFA0B518F011AB116100EF7303D50FB4DFBEE8308C2EBF06A1D6CC453CAB6
Key Value
MD5505A926DEEF0EE159CB61F00AB9BFE5B
PackageArchx86_64
PackageDescriptionThe fast cross-validation via sequential testing (CVST) procedure is an improved cross-validation procedure which uses non-parametric testing coupled with sequential analysis to determine the best parameter set on linearly increasing subsets of the data. By eliminating under-performing candidates quickly and keeping promising candidates as long as possible, the method speeds up the computation while preserving the capability of a full cross-validation. Additionally to the CVST the package contains an implementation of the ordinary k-fold cross-validation with a flexible and powerful set of helper objects and methods to handle the overall model selection process. The implementations of the Cochran's Q test with permutations and the sequential testing framework of Wald are generic and can therefore also be used in other contexts.
PackageMaintainerhttps://www.suse.com/
PackageNameR-CVST
PackageReleaselp154.2.1
PackageVersion0.2.2
SHA-14FC0E11AFD02F976096882950C38A21E0F76B795
SHA-2563194154DF768C67C120E5EEA066E6D53FA581015429CA2E70A1F1918FE1176B7