Result for 20ABAFC9810D2A5119960E7C6F3969C91DFE9599

Query result

Key Value
FileName./usr/share/doc/r-cran-rsvd/tests/testthat/test_dependency.R
FileSize637
MD5B141B1A876A9B69671F54F1D31F89790
SHA-120ABAFC9810D2A5119960E7C6F3969C91DFE9599
SHA-256A80BAC8F7FC7482DE7B8E839812D40509E76D980B956CE2CABAFAC0EC91C0FF0
SSDEEP12:Hx6WuVVGOlLREMsJkREMxAkREMJQkREM34:gTGA6hk66Ak6YQk684
TLSHT11BF05E8017C24F8472BBC0841070E1E5863AF7AD84850D3AFDDD345C40DC5882567DF7
hashlookup:parent-total4
hashlookup:trust70

Network graph view

Parents (Total: 4)

The searched file hash is included in 4 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize3588980
MD523C0BF9B14DC3D802FCF46E920CA7820
PackageDescriptionRandomized Singular Value Decomposition Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension reduction, and data compression. Classically, highly accurate deterministic matrix algorithms are used for this task. However, the emergence of large-scale data has severely challenged our computational ability to analyze big data. The concept of randomness has been demonstrated as an effective strategy to quickly produce approximate answers to familiar problems such as the singular value decomposition (SVD). The rsvd package provides several randomized matrix algorithms such as the randomized singular value decomposition (rsvd), randomized principal component analysis (rpca), randomized robust principal component analysis (rrpca), randomized interpolative decomposition (rid), and the randomized CUR decomposition (rcur). In addition several plot functions are provided. The methods are discussed in detail by Erichson et al. (2016) <arXiv:1608.02148>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-rsvd
PackageSectiongnu-r
PackageVersion1.0.5-1
SHA-136B7D4C23852BFA47C959A59E11FDE049C2D6B52
SHA-256117C9626FAD0BF928D81E96DAB144B3F09F97BB3A0566A9AF60E423C15417DEC
Key Value
FileSize6129192
MD581E9E6410B1696520A3DC55E53F04561
PackageDescriptionRandomized Singular Value Decomposition Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension reduction, and data compression. Classically, highly accurate deterministic matrix algorithms are used for this task. However, the emergence of large-scale data has severely challenged our computational ability to analyze big data. The concept of randomness has been demonstrated as an effective strategy to quickly produce approximate answers to familiar problems such as the singular value decomposition (SVD). The rsvd package provides several randomized matrix algorithms such as the randomized singular value decomposition (rsvd), randomized principal component analysis (rpca), randomized robust principal component analysis (rrpca), randomized interpolative decomposition (rid), and the randomized CUR decomposition (rcur). In addition several plot functions are provided. The methods are discussed in detail by Erichson et al. (2016) <arXiv:1608.02148>.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-rsvd
PackageSectiongnu-r
PackageVersion1.0.3-3build1
SHA-13C123CA67703B31289EA60824B340D90028FB933
SHA-256B4A3047FBE29B99B5D4FDBA7F5D91D489663D4587FD39A3BA3C185D3026E7FF5
Key Value
FileSize6131088
MD576BF9E8DAE259B35328DD3A51D5E334A
PackageDescriptionRandomized Singular Value Decomposition Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension reduction, and data compression. Classically, highly accurate deterministic matrix algorithms are used for this task. However, the emergence of large-scale data has severely challenged our computational ability to analyze big data. The concept of randomness has been demonstrated as an effective strategy to quickly produce approximate answers to familiar problems such as the singular value decomposition (SVD). The rsvd package provides several randomized matrix algorithms such as the randomized singular value decomposition (rsvd), randomized principal component analysis (rpca), randomized robust principal component analysis (rrpca), randomized interpolative decomposition (rid), and the randomized CUR decomposition (rcur). In addition several plot functions are provided. The methods are discussed in detail by Erichson et al. (2016) <arXiv:1608.02148>.
PackageMaintainerUbuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
PackageNamer-cran-rsvd
PackageSectiongnu-r
PackageVersion1.0.3-1
SHA-14705D37330F1C9EAAD6384493A48B4B024BE40A5
SHA-2567D1F4770752BD9514DEDFC3A474C6BE46B4DDB68356343DD509D0B0A6CB0D468
Key Value
FileSize6129076
MD5D28875B7140E3F8475665FF674282DAA
PackageDescriptionRandomized Singular Value Decomposition Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension reduction, and data compression. Classically, highly accurate deterministic matrix algorithms are used for this task. However, the emergence of large-scale data has severely challenged our computational ability to analyze big data. The concept of randomness has been demonstrated as an effective strategy to quickly produce approximate answers to familiar problems such as the singular value decomposition (SVD). The rsvd package provides several randomized matrix algorithms such as the randomized singular value decomposition (rsvd), randomized principal component analysis (rpca), randomized robust principal component analysis (rrpca), randomized interpolative decomposition (rid), and the randomized CUR decomposition (rcur). In addition several plot functions are provided. The methods are discussed in detail by Erichson et al. (2016) <arXiv:1608.02148>.
PackageMaintainerDebian R Packages Maintainers <r-pkg-team@alioth-lists.debian.net>
PackageNamer-cran-rsvd
PackageSectiongnu-r
PackageVersion1.0.3-3
SHA-1E7774B8B9D1E844DC9B6E101BE59DC936CCBD750
SHA-2568B0DA7C393BA4DA8D837C0B0DBB8CED0D942ADFBD2D1857E677B7F34DA58646E