Result for 205520B00A1BEC041AD364AFC3496D3E22B2962F

Query result

Key Value
FileName./usr/share/doc/packages/python39-seaborn/README.md
FileSize3169
MD500F9275CF6757FB6F6494C3D8F52C569
SHA-1205520B00A1BEC041AD364AFC3496D3E22B2962F
SHA-2569AC2908B08FC3308FF1ACCC9A8D5D0E3565149245B4C09CAFD0888E7E1B3C210
SSDEEP96:2DZj6S9g2cY/X2xf6fBfSfQIfVSlncfMfuyje6jCT836:p2hfRjF36
TLSHT1FB5162FB6D1D5E792B82F1E1E48E188CE76FE0AD26D140B5A0AC81796009776227F70C
hashlookup:parent-total9
hashlookup:trust95

Network graph view

Parents (Total: 9)

The searched file hash is included in 9 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD56FC21A1F5C3A951E04C86D837553F14A
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython39-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-1F9561ED5573340F5F03CE5FE735C296D6624371E
SHA-2562D6AB40EA671680EFBA784FFD3B69BE6E2B399DD04973FF071E2C4E266CAD221
Key Value
MD5F3D237ECE65BFC51C3642802885FC747
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython39-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-1E574B016B6308008993C99E1AE6D9638191CD1ED
SHA-2568205BB553903092CAB21640134980C741EF1FCE232F7BE33FBE861EE2E28E052
Key Value
MD55C08C3325020B07714498BBC25C5D07C
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-1DFDFA54E1CB9B44CCF46ADD3488FA020C636A5AA
SHA-2565DF92169F19E33792111B9898C75B259EE619D8A6EAD3A6D3504A842EF83DFD7
Key Value
MD522DC86AE0A2DEE85292A857E69394E09
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-1DBA61D470A066E02D8B859CF2D47A91759868C25
SHA-256750F25738587AA9C781CBC915C7D5CEA7CD70E48C89F2C6D557DAE3A19AD5E6B
Key Value
MD5A0B9D0D4E3E26497C60372D820528C7A
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython310-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-131A1CC3990A233566AC968A9672951243BF7C248
SHA-256F978A313AA70BF578EF7303541CFE4D9FC1F7A8E7F203F4FEBD1E39417E9A3CB
Key Value
MD5BD9B092F464C2E40B0EE8520886F43EB
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython39-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-14C5453CDDBBD6A3E927152F8F141906090F3D9F4
SHA-256A10F0D4A26BF931A985B2B511974206414495169B88C00C492C46B68EBE6343C
Key Value
MD5B3B1C6EF85D9BBCEA1769E7BC80E17D5
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython38-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-19833D8BCD60E858C85387ADF406DDE6204EACF3E
SHA-25632BE3639D80DE3112C2958677E61ACC95D2691BD7EBD91D20452E2F6A513EB5C
Key Value
MD56523EA65AA08E14082E6106DCDBD551C
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython310-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-16E3E23A673F255682DA6B6DCF518679E624DB829
SHA-2567E956DD6106C2AA43C9628E72FB69CCAB1FE4F69AC09E1BFE7E71840C2A29D40
Key Value
MD58C0E9C24728389B0D0E7D97EFA8D32C6
PackageArchnoarch
PackageDescriptionSeaborn is a library for making attractive and informative statistical graphics in Python. It is built on top of matplotlib and tightly integrated with the PyData stack, including support for numpy and pandas data structures and statistical routines from scipy and statsmodels. Some of the features that seaborn offers are: - Several built-in themes that improve on the default matplotlib aesthetics - Tools for choosing color palettes to make beautiful plots that reveal patterns in your data - Functions for visualizing univariate and bivariate distributions or for comparing them between subsets of data - Tools that fit and visualize linear regression models for different kinds of independent and dependent variables - Functions that visualize matrices of data and use clustering algorithms to discover structure in those matrices - A function to plot statistical timeseries data with flexible estimation and representation of uncertainty around the estimate - High-level abstractions for structuring grids of plots that let you easily build complex visualizations
PackageNamepython310-seaborn
PackageRelease33.1
PackageVersion0.11.2
SHA-15A25E1F9614CDD6489D8E355CFC535120BF173C4
SHA-2560CC2DA4A133F1FDF364ADAE04D702C04A141287FEDD94BE103C2EF5223646EDA