Result for 1ED5993EB150141577D0D4791AD8F1E6708D2871

Query result

Key Value
FileName./usr/lib64/R/library/acepack/R/acepack.rdx
FileSize271
MD541E3A24E75B856E2426C206333EDACB1
SHA-11ED5993EB150141577D0D4791AD8F1E6708D2871
SHA-2563532907169E842226D55CBB11F821753FCA126C505F25151005E2C59628BB5BC
SSDEEP6:XtVFoThizkTPQfz2cfuGnll31L6kCJ002EUTHb6GglBQl:Xchiz4PQb2cfuUlWlp2EEp
TLSHT148D02B3893C433B1995D58391F49B68C493F445D2215A3CFAD110B458F9311D569278E
hashlookup:parent-total1
hashlookup:trust55

Network graph view

Parents (Total: 1)

The searched file hash is included in 1 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5771CC327785BB45FBBB21542C21E716B
PackageArchx86_64
PackageDescriptionTwo nonparametric methods for multiple regression transform selection are provided. The first, Alternative Conditional Expectations (ACE), is an algorithm to find the fixed point of maximal correlation, i.e. it finds a set of transformed response variables that maximizes R^2 using smoothing functions [see Breiman, L., and J.H. Friedman. 1985. "Estimating Optimal Transformations for Multiple Regression and Correlation". Journal of the American Statistical Association. 80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is the Additivity Variance Stabilization (AVAS) method which works better than ACE when correlation is low [see Tibshirani, R.. 1986. "Estimating Transformations for Regression via Additivity and Variance Stabilization". Journal of the American Statistical Association. 83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction to these two methods is in chapter 16 of Frank Harrel's "Regression Modeling Strategies" in the Springer Series in Statistics.
PackageNameR-acepack
PackageReleaselp153.2.1
PackageVersion1.4.1
SHA-1E2474E1E682E9DF8A7580A2A6220FA92CB0DD4AD
SHA-2566996C27D136849C8116DD12436C28FC292D0AD9487E186D630BD429F011C60D6